【題目】已知橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過(guò)點(diǎn)
(1)求橢圓C的離心率:
(2)設(shè)過(guò)點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且 ,求點(diǎn)Q的軌跡方程.

【答案】
(1)解:∵橢圓C: (a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過(guò)點(diǎn)

∴c=1,2a=PF1+PF2= =2 ,即a=

∴橢圓的離心率e= = =


(2)解:由(1)知,橢圓C的方程為 ,設(shè)點(diǎn)Q的坐標(biāo)為(x,y)

(I)當(dāng)直線l與x軸垂直時(shí),直線l與橢圓C交于(0,1)、(0,﹣1)兩點(diǎn),此時(shí)點(diǎn)Q的坐標(biāo)為(0,2±

(II)當(dāng)直線l與x軸不垂直時(shí),可設(shè)其方程為y=kx+2,

因?yàn)镸,N在直線l上,可設(shè)點(diǎn)M,N的坐標(biāo)分別為(x1,kx1+2),(x2,kx2+2),則

,又|AQ|2=(1+k2)x2,

,即 = …①

將y=kx+2代入 中,得(2k2+1)x2+8kx+6=0…②

由△=(8k)2﹣24(2k2+1)>0,得k2

由②知x1+x2=﹣ ,x1x2= ,代入①中化簡(jiǎn)得x2= …③

因?yàn)辄c(diǎn)Q在直線y=kx+2上,所以k= ,代入③中并化簡(jiǎn)得10(y﹣2)2﹣3x2=18

由③及k2 可知0<x2 ,即x∈(﹣ ,0)∪(0,

由題意,Q(x,y)在橢圓C內(nèi),所以﹣1≤y≤1,

又由10(y﹣2)2﹣3x2=18得(y﹣2)2∈( , )且﹣1≤y≤1,則y∈[ ,2﹣ ]

綜上得,點(diǎn)Q的軌跡方程為10(y﹣2)2﹣3x2=18,其中x∈(﹣ , ),y∈[ ,2﹣ ]


【解析】(1)由題設(shè)條件結(jié)合橢圓的性質(zhì)直接求出a,c的值,即可得到橢圓的離心率;(2)由題設(shè)過(guò)點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),可設(shè)出直線的方程與橢圓的方程聯(lián)立,由于兩曲線交于兩點(diǎn),故判斷式大于0且可利用根與系數(shù)的關(guān)系建立M,N兩點(diǎn)的坐標(biāo)與直線的斜率k的等量關(guān)系,然后再設(shè)出點(diǎn)Q的坐標(biāo),用兩點(diǎn)M,N的坐標(biāo)表示出 ,再綜合計(jì)算即可求得點(diǎn)Q的軌跡方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)F為拋物線C:y2=4x的焦點(diǎn),過(guò)點(diǎn)P(﹣1,0)的直線l交拋物線C于兩點(diǎn)A,B,點(diǎn)Q為線段AB的中點(diǎn),若|FQ|=2,則直線l的斜率等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知奇函數(shù)fx)=aa為常數(shù)).

1)求a的值;

2)若函數(shù)gx)=|2x+1fx|k2個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍;

3)若x[2,﹣1]時(shí),不等式fx恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣
(1)求cosA的值;
(2)若a=4 ,b=5,求向量 方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中)的圖象如圖所示:

(1)求函數(shù)的解析式及其對(duì)稱軸的方程;

(2)當(dāng)時(shí),方程有兩個(gè)不等的實(shí)根,求實(shí)數(shù)的取值范圍,并求此時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】建設(shè)生態(tài)文明,是關(guān)系人民福祉,關(guān)乎民族未來(lái)的長(zhǎng)遠(yuǎn)大計(jì).某市通宵營(yíng)業(yè)的大型商場(chǎng),為響應(yīng)節(jié)能減排的號(hào)召,在氣溫超過(guò)時(shí),才開(kāi)放中央空調(diào)降溫,否則關(guān)閉中央空調(diào).如圖是該市夏季一天的氣溫(單位:)隨時(shí)間(,單位:小時(shí))的大致變化曲線,若該曲線近似的滿足函數(shù)關(guān)系.

(1)求函數(shù)的表達(dá)式;

(2)請(qǐng)根據(jù)(1)的結(jié)論,判斷該商場(chǎng)的中央空調(diào)應(yīng)在本天內(nèi)何時(shí)開(kāi)啟?何時(shí)關(guān)閉?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AEBF所成角的余弦值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分形幾何學(xué)是一門(mén)以不規(guī)則幾何形態(tài)為研究對(duì)象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來(lái)得到一系列圖形,如圖1,線段的長(zhǎng)度為a,在線段上取兩個(gè)點(diǎn),,使得,以為一邊在線段的上方做一個(gè)正六邊形,然后去掉線段,得到圖2中的圖形;對(duì)圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:

記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線段長(zhǎng)的和為,現(xiàn)給出有關(guān)數(shù)列的四個(gè)命題:

①數(shù)列是等比數(shù)列;

②數(shù)列是遞增數(shù)列;

③存在最小的正數(shù),使得對(duì)任意的正整數(shù) ,都有

④存在最大的正數(shù),使得對(duì)任意的正整數(shù),都有

其中真命題的序號(hào)是________________(請(qǐng)寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一場(chǎng)娛樂(lè)晚會(huì)上,有5位民間歌手(1至5號(hào))登臺(tái)演唱,由現(xiàn)場(chǎng)數(shù)百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨(dú)立地在選票上選3名歌手,其中觀眾甲是1號(hào)歌手的歌迷,他必選1號(hào),不選2號(hào),另在3至5號(hào)中隨機(jī)選2名.觀眾乙和丙對(duì)5位歌手的演唱沒(méi)有偏愛(ài),因此在1至5號(hào)中隨機(jī)選3名歌手.
(1)求觀眾甲選中3號(hào)歌手且觀眾乙未選中3號(hào)歌手的概率;
(2)X表示3號(hào)歌手得到觀眾甲、乙、丙的票數(shù)之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案