【題目】繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費按行駛里程加用車時間,標準是“1元/公里+0.1元/分鐘”,李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費的時間是一個隨機變量,根據(jù)一段時間統(tǒng)計40次路上開車花費時間在各時間段內(nèi)的情況如下:

時間(分鐘)

次數(shù)

8

14

8

8

2

以各時間段發(fā)生的頻率視為概率,假設每次路上開車花費的時間視為用車時間,范圍為分鐘.

(Ⅰ)若李先生上.下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設是4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費用大約是多少(同一時段,用該區(qū)間的中點值作代表).

【答案】(Ⅰ)見解析;(Ⅱ)542元.

【解析】【試題分析】(1)運用二項分布建立隨機變量的概率分布列,再運用數(shù)學期望公式進行求解;(2)運用加權平均數(shù)的計算公式分析求解。

(Ⅰ)李先生一次租用共享汽車,為最優(yōu)選擇的概率

依題意的值可能為0,1,2,3,4

分布列

0

1

2

3

4

P

(Ⅱ)每次用車路上平均花的時間(分鐘)

每次租車的費用約為10+35.5×0.1=13.55元.

一個月的平均用車費用約為542元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3. (Ⅰ)當a=﹣2時,求不等式f(x)<g(x)的解集;
(Ⅱ)設a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設橢圓 的離心率為, 分別為橢圓的左、右頂點, 為右焦點,直線的交點到軸的距離為,過點軸的垂線, 上異于點的一點,以為直徑作圓.

(1)求的方程;

(2)若直線的另一個交點為,證明:直線與圓相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設a>0,求函數(shù)f(x)在[2a,4a]上的最小值;
(3)某同學發(fā)現(xiàn):總存在正實數(shù)a、b(a<b),使ab=ba , 試問:他的判斷是否正確?若不正確,請說明理由;若正確,請直接寫出a的取值范圍(不需要解答過程).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直三棱柱ABCA1B1C1中,ABACEBC的中點,求證

(Ⅰ)平面AB1E⊥平面B1BCC1

(Ⅱ)A1C//平面AB1E

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=kx+1,若方程f(x)﹣g(x)=0有兩個不同實根,則實數(shù)k的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)已知函數(shù)f(x)=2cos x(sin x+cos x).

(1)求f的值;

(2)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】二次函數(shù)f(x)的圖象經(jīng)過點(0, ),且f′(x)=﹣x﹣1,則不等式f(10x)>0的解集為(
A.(﹣3,1)
B.(﹣lg3,0)
C.( ,1)
D.(﹣∞,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解患肺心病是否與性別有關,在某醫(yī)院對入院者用簡單隨機抽樣方法抽取50人進行調(diào)查,結(jié)果如下列聯(lián)表:

(Ⅰ)是否有的把握認為入院者中患肺心病與性別有關?請說明理由;

(Ⅱ)已知在患肺心病的10位女性中,有3位患胃。F(xiàn)在從這10位女性中,隨機選出3名進行其它方面的排查,記選出患胃病的女性人數(shù)為,求的分布列和數(shù)學期望;

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

K

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案