【題目】從集合的所有非空子集中,等可能地取出個(gè).
(1)若,求所取子集的元素既有奇數(shù)又有偶數(shù)的概率;
(2)若,記所取子集的元素個(gè)數(shù)之差為,求的分布列及數(shù)學(xué)期望.
【答案】(1) .
(2) 分布列見(jiàn)解析,.
【解析】分析:(1)集合的非空子集數(shù)為,其中非空子集的元素全為
奇數(shù)的子集數(shù)為,全為偶數(shù)的子集數(shù)為,由古典概型概率公式可得結(jié)果;(2)當(dāng)時(shí),的所有可能取值為,由組合知識(shí),利用古典概型概率公式可得隨機(jī)變量對(duì)應(yīng)的概率,從而可得分布列,進(jìn)而利用期望公式可得其數(shù)學(xué)期望.
詳解:(1)當(dāng)時(shí),記事件:“所取子集的元素既有奇數(shù)又有偶數(shù)”.
則集合的非空子集數(shù)為,其中非空子集的元素全為
奇數(shù)的子集數(shù)為,全為偶數(shù)的子集數(shù)為,
所以,
(2)當(dāng)時(shí),的所有可能取值為
則
所以的數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義域?yàn)?/span>R的函數(shù).
(1)在平面直角坐標(biāo)系中作出函數(shù)f(x)的圖象,并指出f(x)的單調(diào)區(qū)間(不需證明);
(2)若方程f(x)+5a=0有兩個(gè)解,求出a的取值范圍(不需嚴(yán)格證明,簡(jiǎn)單說(shuō)明即可);
(3)設(shè)定義域?yàn)?/span>R的函數(shù)g(x)為偶函數(shù),且當(dāng)x≥0時(shí),g(x)=f(x),求g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)與拋物線(xiàn)的焦點(diǎn)重合,且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓的右頂點(diǎn),過(guò)點(diǎn)作兩條直線(xiàn)分別與橢圓交于另一點(diǎn),若直線(xiàn)的斜率之積為,求證:直線(xiàn)恒過(guò)一個(gè)定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左頂點(diǎn),右焦點(diǎn)分別為,右準(zhǔn)線(xiàn)為,
(1)若直線(xiàn)上不存在點(diǎn),使為等腰三角形,求橢圓離心率的取值范圍;
(2)在(1)的條件下,當(dāng)取最大值時(shí),點(diǎn)坐標(biāo)為,設(shè)是橢圓上的三點(diǎn),且,求:以線(xiàn)段的中心為原點(diǎn),過(guò)兩點(diǎn)的圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近個(gè)月廣告投入量(單位:萬(wàn)元)和收益(單位:萬(wàn)元)的數(shù)據(jù)如下表:
月份 | ||||||
廣告投入量 | ||||||
收益 |
他們分別用兩種模型①,②分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值:
(Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說(shuō)明理由;
(Ⅱ)殘差絕對(duì)值大于的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除:
(ⅰ)剔除異常數(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程
(ⅱ)若廣告投入量時(shí),該模型收益的預(yù)報(bào)值是多少?
附:對(duì)于一組數(shù)據(jù),,……,,其回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)到拋物線(xiàn)焦點(diǎn)的距離為.
(1)求的值;
(2) 設(shè)是拋物線(xiàn)上異于的兩個(gè)不同點(diǎn),過(guò)作軸的垂線(xiàn),與直線(xiàn)交于點(diǎn),過(guò)作軸的垂線(xiàn),與直線(xiàn)交于點(diǎn),過(guò)作軸的垂線(xiàn),與直線(xiàn)分別交于點(diǎn).
求證:①直線(xiàn)的斜率為定值;
②是線(xiàn)段的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解本屆高二學(xué)生對(duì)文理科的選擇與性別是否有關(guān),現(xiàn)隨機(jī)從高二的全體學(xué)生中抽取了若干名學(xué)生,據(jù)統(tǒng)計(jì),男生35人,理科生40人,理科男生30人,文科女生15人。
(1)完成如下2×2列聯(lián)表,判斷是否有99.9%的把握認(rèn)為本屆高二學(xué)生“對(duì)文理科的選擇與性別有關(guān)”?
男生 | 女生 | 合計(jì) | |
文科 | |||
理科 | |||
合計(jì) |
(2)已采用分層抽樣的方式從樣本的所有女生中抽取了5人,現(xiàn)從這5人中隨機(jī)抽取2人參加座談會(huì),求抽到的2人恰好一文一理的概率。
0.15 | 0.10 | 0.05 | 0.01 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式,其中為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為菱形,,,點(diǎn)為的中點(diǎn).
(1)證明:;
(2)若點(diǎn)為線(xiàn)段的中點(diǎn),平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:在上是單調(diào)遞減函數(shù);
(2)若函數(shù)有兩個(gè)正零點(diǎn)、,求的取值范圍,并證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com