【題目】用黑白兩種顏色隨機地染如圖所示表格中6個格子,每格子染一種顏色,并且從左往右數(shù),不管數(shù)到哪個格子,總有黑色格子不少于白色格子的染色方法種數(shù)為________

【答案】20

【解析】

根據(jù)題意,分情況討論,求出每種情況對應的染色方法種數(shù),即可得出結(jié)果.

從左往右數(shù),不管數(shù)到哪個格子,總有黑色格子不少于白色格子包含的情況有:

全染黑色,有1種方法;

第一個格子染黑色,另外5個格子中有1個格子染白色,剩余的都染黑色,有5種方法;第一個格子染黑色,另外5個格子中有2個格子染白色,剩余的都染黑色,有9種方法;第一個格子染黑色,另外5個格黑子中有3個格子染白色,剩余的都染黑色,有5種方法.

所以從左往右數(shù),不管數(shù)到哪個格子,總有黑色格子不少于白色格子的染色方法數(shù)為

故答案為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),圓的參數(shù)方程為為參數(shù))

1)求的普通方程;

2)設點,直線與曲線相交于,兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】可組成不同的四位數(shù)的個數(shù)為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線與拋物線相交于不同的兩點.

(1)如果直線過拋物線的焦點,求的值;

(2)如果,證明直線必過一定點,并求出該定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】我國古代《九章算術》中將上,下兩面為平行矩形的六面體稱為芻童.如圖的芻童有外接球,且,,,平面與平面間的距離為,則該芻童外接球的體積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),對任意的都有,且當時,,則當時,方程的所有根之和為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在我國瓷器的歷史上六棱形的瓷器非常常見,因為六、八是中國人的吉利數(shù)字,所以好多瓷器都做成六棱形和八棱形.數(shù)學李老師有一個正六棱柱形狀的筆筒,如圖,底面邊長為,高為(底部及筒壁厚度忽略不計).一根長度為的圓鐵棒(粗細忽略不計)斜放在筆筒內(nèi)部,的一端置于正六棱柱某一側(cè)棱的底端,另一端置于和該側(cè)棱正對的側(cè)棱上.一位小朋友玩耍時,向筆筒內(nèi)注水,恰好將圓鐵棒淹沒,又將一個圓球放在筆筒口,球面又恰好接觸水面,則球的表面積為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在我國瓷器的歷史上六棱形的瓷器非常常見,因為六、八是中國人的吉利數(shù)字,所以好多瓷器都做成六棱形和八棱形.數(shù)學李老師有一個正六棱柱形狀的筆筒,如圖,底面邊長為,高為(底部及筒壁厚度忽略不計).一根長度為的圓鐵棒(粗細忽略不計)斜放在筆筒內(nèi)部,的一端置于正六棱柱某一側(cè)棱的底端,另一端置于和該側(cè)棱正對的側(cè)棱上.一位小朋友玩耍時,向筆筒內(nèi)注水,恰好將圓鐵棒淹沒,又將一個圓球放在筆筒口,球面又恰好接觸水面,則球的表面積為______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,左右焦點分別為,,離心率為,右焦點到右頂點的距離為1.

(1)求橢圓的方程;

(2)過 的直線與橢圓交于不同的兩點,,則的面積是否存在最大值?若存在,求出這個最大值及直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案