【題目】已知過(guò)拋物線(xiàn)E:x2=2py(p>0)焦點(diǎn)F且傾斜角的60°直線(xiàn)l與拋物線(xiàn)E交于點(diǎn)M,N,△OMN的面積為4.
(1)求拋物線(xiàn)E的方程;
(2)設(shè)P是直線(xiàn)y=﹣2上的一個(gè)動(dòng)點(diǎn),過(guò)P作拋物線(xiàn)E的切線(xiàn),切點(diǎn)分別為A、B,直線(xiàn)AB與直線(xiàn)OP、y軸的交點(diǎn)分別為Q、R,點(diǎn)C、D是以R為圓心、RQ為半徑的圓上任意兩點(diǎn),求∠CPD最大時(shí)點(diǎn)P的坐標(biāo).

【答案】
(1)解:依題意, ,所以直線(xiàn)l的方程為 ;

得: ,

法一:所以

O到MN的距離 ,

∴p=2,拋物線(xiàn)方程為x2=4y;

法二: , ,故拋物線(xiàn)方程為x2=4y.


(2)解:設(shè) ,由x2=4y得 ,

則切線(xiàn)PA方程為 ,

同理,切線(xiàn)PB方程為 ,

把P代入可得 ,故直線(xiàn)AB的方程為 即tx﹣2y+4=0,

∴R(0,2)由 ,

當(dāng)PC,PD與圓R相切時(shí)角∠CPD最大,

此時(shí) ,等號(hào)當(dāng) 時(shí)成立,

∴當(dāng) 時(shí),所求的角∠CPD最大.

綜上,當(dāng)∠CPD最大時(shí)點(diǎn)P的坐標(biāo)為

法二:同解法一,得AB:tx﹣2y+4=0,注意到OP⊥AB,

,

當(dāng)且僅當(dāng)t2+8即 時(shí)等號(hào)成立.


【解析】(1)利用點(diǎn)斜法寫(xiě)出直線(xiàn)l的方程為 ;結(jié)合△OMN的幾何意義和三角形的面積求法求得p的值即可;(2)設(shè) ,由x2=4y得 ,易得切線(xiàn)PA、PB的直線(xiàn)方程,把點(diǎn)P的坐標(biāo)代入得到直線(xiàn)AB的方程tx﹣2y+4=0,由R的坐標(biāo)和圓半徑的計(jì)算方法求得半徑的長(zhǎng)度,則當(dāng)PC,PD與圓R相切時(shí)角∠CPD最大,所以利用銳角三角函數(shù)的定義和不等式的基本性質(zhì)進(jìn)行解答即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,網(wǎng)格紙上的小正方形邊長(zhǎng)為1,粗線(xiàn)畫(huà)出的是某幾何體的三視圖,則該幾何體外接球的體積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù) 的圖象不可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)F(﹣1,0),過(guò)直線(xiàn)l:x=﹣2右側(cè)的動(dòng)點(diǎn)P作PA⊥l于點(diǎn)A,∠APF的平分線(xiàn)交x軸于點(diǎn)B,|PA|= |BF|.

(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線(xiàn)q交曲線(xiàn)C于M,N,試問(wèn):x軸正半軸上是否存在點(diǎn)E,直線(xiàn)EM,EN分別交直線(xiàn)l于R,S兩點(diǎn),使∠RFS為直角?若存在,求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AD與BC是四面體ABCD中相互垂直的棱,若AD=BC=6,且∠ABD=∠ACD=60°,則四面體ABCD的體積的最大值是(
A.
B.
C.18
D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列 項(xiàng)和為 ,則下列一定成立的是( )
A.若 ,則 ;
B.若 ,則 ;
C.若 ,則 ;
D.若 ,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合 存在正實(shí)數(shù) ,使得定義域內(nèi)任意 都有
(1)若 ,試判斷 是否為 中的元素,并說(shuō)明理由;
(2)若 ,且 ,求 的取值范圍;
(3)若 ),且 ,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且 ,則Sn取最小值時(shí),n的值是(
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上且以4為周期的奇函數(shù),當(dāng)x∈(0,2)時(shí),f(x)=ln(x2﹣x+b),若函數(shù)f(x)在區(qū)間[﹣2,2]上的零點(diǎn)個(gè)數(shù)為5,則實(shí)數(shù)b的取值范圍是

查看答案和解析>>

同步練習(xí)冊(cè)答案