【題目】已知函數(shù)上是增函數(shù),則的取值范圍是( 。

A. B. C. D.

【答案】C

【解析】

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),則x2﹣ax+3a>0且f(2)0,根據(jù)二次函數(shù)的單調(diào)性,我們可得到關(guān)于a的不等式,解不等式即可得到a的取值范圍.

若函數(shù)f(x)=log2(x2﹣ax+3a)在[2,+∞)上是增函數(shù),

則當(dāng)x∈[2,+∞)時(shí),

x2﹣ax+3a>0且函數(shù)f(x)=x2﹣ax+3a為增函數(shù)

,f(2)=4+a>0

解得﹣4<a≤4

故選:C.

【點(diǎn)睛】

本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對(duì)數(shù)函數(shù)的單調(diào)區(qū)間,其中根據(jù)復(fù)合函數(shù)的單調(diào)性,構(gòu)造關(guān)于a的不等式,是解答本題的關(guān)鍵.

型】單選題
結(jié)束】
10

【題目】圓錐的高和底面半徑之比,且圓錐的體積,則圓錐的表面積為( 。

A. B. C. D.

【答案】D

【解析】

根據(jù)圓錐的體積求出底面圓的半徑和高,求出母線長(zhǎng),即可計(jì)算圓錐的表面積.

圓錐的高和底面半徑之比,

,

又圓錐的體積

,

解得

,

母線長(zhǎng)為,

則圓錐的表面積為

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,側(cè)棱與底面垂直, ,點(diǎn)分別為的中點(diǎn).

(1)證明: 平面;

證明: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合Pn={1,2,…,n},n∈N* . 記f(n)為同時(shí)滿足下列條件的集合A的個(gè)數(shù):
①APn;②若x∈A,則2xA;③若x∈ A,則2x A.
(1)求f(4);
(2)求f(n)的解析式(用n表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四棱錐,底面是邊長(zhǎng)為的菱形,,側(cè)面為正三角形,側(cè)面底面為側(cè)棱的中點(diǎn),為線段的中點(diǎn)

(Ⅰ)求證:平面

(Ⅱ)求證:;

(Ⅲ)求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)榧?/span>A,B{x|x<a}

(1)求集合A

(2)AB,a的取值范圍;

(3)若全集U{x|x4},a=-1U AA(U B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(選修4﹣4:坐標(biāo)系與參數(shù)方程):
在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知射線θ= 與曲線 (t為參數(shù))相交于A,B來(lái)兩點(diǎn),則線段AB的中點(diǎn)的直角坐標(biāo)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),l是過(guò)點(diǎn)A與x軸垂直的直線,D是直線l與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);
(2)過(guò)原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某自來(lái)水廠的蓄水池有噸水,水廠每小時(shí)可向蓄水池中注水噸,同時(shí)蓄水池又向居民小區(qū)不間斷供水,小時(shí)內(nèi)供水總量為噸,其中

)從供水開始到第幾小時(shí),蓄水池中的存水量最少? 最少水量是多少噸?

)若蓄水池中水量少于噸時(shí),就會(huì)出現(xiàn)供水緊張現(xiàn)象,請(qǐng)問(wèn):在一天的小時(shí)內(nèi),大約有幾小時(shí)出現(xiàn)供水緊張現(xiàn)象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線的焦點(diǎn)為,點(diǎn)為拋物線上一點(diǎn),且不在直線,周長(zhǎng)的最小值為

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案