【題目】為了增強(qiáng)環(huán)保意識(shí),我校從男生中隨機(jī)抽取了60人,從女生中隨機(jī)抽取了50人參加環(huán)保知識(shí)測(cè)試,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
男生 | 40 | 20 | 60 |
女生 | 20 | 30 | 50 |
總計(jì) | 60 | 50 | 110 |
(1)試判斷是否有99%的把握認(rèn)為環(huán)保知識(shí)是否優(yōu)秀與性別有關(guān);
(2)為參加市里舉辦的環(huán)保知識(shí)競(jìng)賽,學(xué)校舉辦預(yù)選賽,已知在環(huán)保測(cè)試中優(yōu)秀的同學(xué)通過(guò)預(yù)選賽的概率為 ,現(xiàn)在環(huán)保測(cè)試中優(yōu)秀的同學(xué)中選3人參加預(yù)選賽,若隨機(jī)變量X表示這3人中通過(guò)預(yù)選賽的人數(shù),求X的分布列與數(shù)學(xué)期望.
附:K2=
P(K2≥k) | 0.500 | 0.400 | 0.100 | 0.010 | 0.001 |
k | 0.455 | 0.708 | 2.706 | 6.635 | 10.828 |
【答案】
(1)解:由題意: K2≈7.822K2≈7.822>6.635,
∴有99%的把握認(rèn)為環(huán)保知識(shí)是否優(yōu)秀與性別有關(guān).
(2)解:由題意X的可能取值為0,1,2,3,
,
,
,
,
∴X的分布列為:
X | 0 | 1 | 2 | 3 |
P |
E(X)= =2
【解析】(1)由題意求出K2 , 由此得到有99%的把握認(rèn)為環(huán)保知識(shí)是否優(yōu)秀與性別有關(guān).(2)由題意X的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和E(X).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解離散型隨機(jī)變量及其分布列的相關(guān)知識(shí),掌握在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱(chēng)表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱(chēng)分布列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017江西4月質(zhì)檢】已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓的方程;
(2)過(guò)點(diǎn)且斜率大于0的直線與橢圓相交于點(diǎn),,直線,與軸相交于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017四川資陽(yáng)4月模擬】共享單車(chē)是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車(chē)單車(chē)共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來(lái)越多地引起了人們的關(guān)注.某部門(mén)為了對(duì)該城市共享單車(chē)加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車(chē)的推行情況進(jìn)行問(wèn)卷調(diào)查,并將問(wèn)卷中的這100人根據(jù)其滿(mǎn)意度評(píng)分值(百分制)按照[50,60),[60,70),…,[90,100]分成5組,制成如圖所示頻率分直方圖.
(Ⅰ)求圖中的值;
(Ⅱ)已知滿(mǎn)意度評(píng)分值在[90,100]內(nèi)的男生數(shù)與女生數(shù)的比為2:1,若在滿(mǎn)意度評(píng)分值為[90,100]的人中隨機(jī)抽取4人進(jìn)行座談,設(shè)其中的女生人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017山西三區(qū)八校二!已知函數(shù)(其中,為常數(shù)且)在處取得極值.
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列{an}的首項(xiàng)為1,公比為q,它的前n項(xiàng)和為Sn;
(1)若S3=3,S6=﹣21,求公比q;
(2)若q>0,且Tn=a1+a3+…+a2n﹣1 , 求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=AA1= , ∠ABC=60°.
(1)證明:AB⊥A1C;
(2)求二面角A﹣A1C﹣B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)列
(1)在等差數(shù)列{an}中,a6=10,S5=5,求該數(shù)列的第8項(xiàng)a8;
(2)在等比數(shù)列{bn}中,b1+b3=10,b4+b6= ,求該數(shù)列的前5項(xiàng)和S5 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2017南通一模19】已知函數(shù)。
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若,證明:函數(shù)有且只有一個(gè)零點(diǎn);
(3)若函數(shù)又兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x2﹣1|+x2+kx.
(1)若對(duì)于區(qū)間(0,+∞)內(nèi)的任意x,總有f(x)≥0成立,求實(shí)數(shù)k的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(0,2)內(nèi)有兩個(gè)不同的零點(diǎn)x1 , x2 , 求:
①實(shí)數(shù)k的取值范圍;
② 的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com