【題目】如圖,三棱柱中, 平面 , 分別為, 的中點.

(1)求證: 平面

(2)若平面平面,求直線與平面所成角的正弦值.

【答案】(1)詳見解析;(2).

【解析】試題(1)連接, , 設(shè)法證明,即可得到平面;

2)由平面,得,

為原點,分別以, , 所在直線為軸, 軸, 軸建立如圖所示的空間直角坐標(biāo)系,

求出相關(guān)點的坐標(biāo),得到直線的方向向量和平面的法向量,利用 即可求出直線與平面所成角的正弦值.

試題解析:

1)連接,則的中點,

的中點,,

平面, 平面,

平面…4

2)由平面,得

為原點,分別以, , 所在直線為軸, 軸, 軸建立如圖所示的空間直角坐標(biāo)系,

設(shè),

, , ,

, ,

取平面的一個法向量為,

, 得:

,令,得

同理可得平面的一個法向量為

平面平面

解得,得,又,

設(shè)直線與平面所成角為,則

.

所以,直線與平面所成角的正弦值是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】檳榔原產(chǎn)于馬來西亞,中國主要分布在云南、海南及臺灣等熱帶地區(qū),亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,南方一些少數(shù)民族還有將果實作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國際癌癥研究機(jī)構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解,兩個少數(shù)民族班的學(xué)生咀嚼檳榔的情況,分別從這兩個班中隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查,經(jīng)他們平均每周咀嚼檳榔的顆數(shù)作為樣本,繪制成如圖所示的莖葉圖(圖中的莖表示十位數(shù)字,葉表示個位數(shù)字).

(1)你能否估計哪個班的學(xué)生平均每周咀嚼檳榔的顆數(shù)較多?

(2)在被抽取的10名學(xué)生中,從平均每周咀嚼檳榔的顆數(shù)不低于20顆的學(xué)生中隨機(jī)抽取3名學(xué)生,求抽到班學(xué)生人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查了解某高等院校畢業(yè)生參加工作后,從事對工作與大學(xué)所學(xué)專業(yè)是否專業(yè)對口,該校隨機(jī)調(diào)查了80位該校2015年畢業(yè)的大學(xué)生,得到具體數(shù)據(jù)如下表:

(1)能否在犯錯誤的概率不超過的前提下,認(rèn)為“畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對口與性別有關(guān)?”

參考公式:

附表:

(2)求這80位畢業(yè)生從事的工作與大學(xué)所學(xué)專業(yè)對口的概率,并估計該校近3年畢業(yè)的2000名大學(xué)生總從事的工作與大學(xué)所學(xué)專業(yè)對口的人數(shù);

(3)若從工作與所學(xué)專業(yè)不對口的15人中選出男生甲、乙,女生對丙、丁,讓他們兩兩進(jìn)行一次10分鐘的職業(yè)交流,該校宣傳部對每次交流都一一進(jìn)行視頻記錄,然后隨機(jī)選取一次交流視頻上傳到學(xué)校的網(wǎng)站,試求選取的視頻恰為異性交流視頻的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點處有相同的切線.

(Ⅰ)若函數(shù)的圖象有兩個交點,求實數(shù)的取值范圍;

(Ⅱ)設(shè)函數(shù),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓C)的左、右焦點分別是、,離心率為,過且垂直于軸的直線被橢圓C截得的線段長為3

1)求橢圓C的方程;

2)點P是橢圓C上除長軸端點外的任一點,連接,設(shè)的角平分線PMC的長軸于點,求m的取值范圍;

3)在(2)的條件下,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點設(shè)直線、的斜率分別為、,若,試證明為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的公差d≠0,且a1a3,a13成等比數(shù)列,若a1=1,Sn為數(shù)列{an}的前n項和,則的最小值為(   。

A.4B.3C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求曲線的普通方程及極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程是,射線 與曲線交于點與直線交于點,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下面推理是類比推理的是(

A.兩條直線平行,則同旁內(nèi)角互補,若是同旁內(nèi)角,則

B.某校高二有20個班,1班有51位團(tuán)員,2班有53位團(tuán)員,3班有52位團(tuán)員,由此推測各班都超過50位團(tuán)員

C.由平面三角形的面積(其中是三角形的周長,是三角形內(nèi)切圓的半徑),推測空間中三棱錐的體積(其中是三棱錐的表面積,是三棱錐內(nèi)切球的半徑)

D.一切偶數(shù)能被2整除,是偶數(shù),故能被2整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形中,,,將沿折起,使平面平面.

1)若是側(cè)棱中點,求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案