(04年湖北卷理)(12分)
如圖,在棱長為1的正方體ABCD―A1B1C1D1中,點E是棱BC的中點,點F是棱
CD上的動點.
(I)試確定點F的位置,使得D1E⊥平面AB1F;
(II)當(dāng)D1E⊥平面AB1F時,求二面角C1―EF―A的大。ńY(jié)果用反三角函數(shù)值表示).
解析:解法一:(I)連結(jié)A1B,則A1B是D1E在面ABB1A;內(nèi)的射影
∵AB1⊥A1B,∴D1E⊥AB1,
于是D1E⊥平面AB1FD1E⊥AF.
連結(jié)DE,則DE是D1E在底面ABCD內(nèi)的射影.
∴D1E⊥AFDE⊥AF.
∵ABCD是正方形,E是BC的中點.
∴當(dāng)且僅當(dāng)F是CD的中點時,DE⊥AF,
即當(dāng)點F是CD的中點時,D1E⊥平面AB1F.…………6分
(II)當(dāng)D1E⊥平面AB1F時,由(I)知點F是CD的中點.
又已知點E是BC的中點,連結(jié)EF,則EF∥BD. 連結(jié)AC,
設(shè)AC與EF交于點H,則CH⊥EF,連結(jié)C1H,則CH是
C1H在底面ABCD內(nèi)的射影.
C1H⊥EF,即∠C1HC是二面角C1―EF―C的平面角.
在Rt△C1CH中,∵C1C=1,CH=AC=,
∴tan∠C1HC=.
∴∠C1HC=arctan,從而∠AHC1=.
故二面角C1―EF―A的大小為.
解法二:以A為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系
(1)設(shè)DF=x,則A(0,0,0),B(1,0,0),D(0,1,0),
A1(0,0,1),B(1,0,1),D1(0,1,1),E,F(xiàn)(x,1,0)
(1)當(dāng)D1E⊥平面AB1F時,F(xiàn)是CD的中點,又E是BC的中點,連結(jié)EF,則EF∥BD. 連結(jié)AC,設(shè)AC與EF交于點H,則AH⊥EF. 連結(jié)C1H,則CH是C1H在底面ABCD內(nèi)的射影.
∴C1H⊥EF,即∠AHC1是二面角C1―EF―A的平面角.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com