【題目】選修4-5:不等式選講
已知函數(shù).
(1)若,求不等式的解集;
(2)若時(shí),恒成立,求的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,為左、右焦點(diǎn),直線過交橢圓于,兩點(diǎn).
(1)若垂直于軸時(shí),求;
(2)當(dāng)時(shí),在軸上方時(shí),求,的坐標(biāo);
(3)若直線交軸于,直線交軸于,是否存在直線,使,若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了在夏季降溫和冬季取暖時(shí)減少能源消耗,業(yè)主決定對房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費(fèi)用為每毫米厚6萬元,且每年的能源消耗費(fèi)用(萬元)與隔熱層厚度(毫米)滿足關(guān)系:.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.
(1)請解釋的實(shí)際意義,并求的表達(dá)式;
(2)當(dāng)隔熱層噴涂厚度為多少毫米時(shí),業(yè)主所付的總費(fèi)用最少?并求此時(shí)與不建隔熱層相比較,業(yè)主可節(jié)省多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某次招聘分為筆試和面試兩個(gè)環(huán)節(jié),且只有筆試過關(guān)者方可進(jìn)入面試環(huán)節(jié),筆試與面試都過關(guān)才會被錄用.筆試需考完全部三科,且至少有兩科優(yōu)秀才算筆試過關(guān),面試需考完全部兩科且兩科均為優(yōu)秀才算面試過關(guān).假設(shè)某考生筆試三科每科優(yōu)秀的概率均為,面試兩科每科優(yōu)秀的概率均為.
(1)求該考生被錄用的概率;
(2)設(shè)該考生在此次招聘活動中考試的科目總數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,用種不同的顏色給圖中的個(gè)格子涂色,每個(gè)格子涂一種顏色,要求最多使用種顏色且相鄰的兩個(gè)格子顏色不同,則不同的涂色方法共有( )
A.種B.種C.種D.種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù);
(2)若f(x)有兩個(gè)極值點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:1(a>b>0),橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為9,最小值為1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)求橢圓C上的點(diǎn)到直線l:4x﹣5y+40=0的最小距離?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com