【題目】設(shè)命題是的必要而不充分條件;
設(shè)命題實(shí)數(shù)滿足方程表示雙曲線.
(1)若“”為真命題,求實(shí)數(shù)的取值范圍;
(2)若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.
【答案】(1) ;(2) .
【解析】試題分析:
首先求得命題p,q為真是參數(shù)m的取值范圍,然后結(jié)合題意得到關(guān)于實(shí)數(shù)m的不等式,求解不等式可得:
若“”為真命題,實(shí)數(shù)的取值范圍是;
若“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍是.
試題解析:
由,得
命題真時(shí),則,得
∴命題假時(shí), ,
命題真時(shí),得,解得或,
命題假時(shí),
(1)若“”為真命題,則真真,所以,
所以或
即實(shí)數(shù)的取值范圍為:
(2)∵為假, 為真,∴一真一假.
當(dāng)真假時(shí),則,所以;
當(dāng)假真時(shí),則,所以.
綜上可知,實(shí)數(shù)的取值范圍為: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù) (為實(shí)數(shù)).
(1)若,求證:函數(shù)在上是增函數(shù);
(2)求函數(shù)在上的最小值及相應(yīng)的的值;
(3)若存在,使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校組織“中國(guó)詩(shī)詞”競(jìng)賽,在“風(fēng)險(xiǎn)答題”的環(huán)節(jié)中,共為選手準(zhǔn)備了三類不同的題目,選手每答對(duì)一個(gè)類、類或類的題目,將分別得到分, 分, 分,但如果答錯(cuò),則相應(yīng)要扣去分, 分, 分,根據(jù)平時(shí)訓(xùn)練經(jīng)驗(yàn),選手甲答對(duì)類、類或類的題目的概率分別為、、,若要每一次答題的均分更大一些,則選手甲應(yīng)選擇的題目類型應(yīng)為_________.(填, 或)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某居民區(qū)的物業(yè)部門每月向居民收取衛(wèi)生費(fèi),計(jì)費(fèi)方法如下:3人和3人以下的住戶,每戶收取5元;超過3人的住戶,每超出1人加收1.2元.設(shè)計(jì)一個(gè)算法,根據(jù)輸入的人數(shù),計(jì)算應(yīng)收取的衛(wèi)生費(fèi),并畫出程序框圖.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中在校學(xué)生2 000人,高一年級(jí)與高二年級(jí)人數(shù)相同并且都比高三年級(jí)多1人.為了響應(yīng)市教育局“陽光體育”號(hào)召,該校開展了跑步和跳繩兩項(xiàng)比賽,要求每人都參加而且只參加其中一項(xiàng),各年級(jí)參與項(xiàng)目人數(shù)情況如下表:
年級(jí) 項(xiàng)目 | 高一年級(jí) | 高二年級(jí) | 高三年級(jí) |
跑步 | a | b | c |
跳繩 | x | y | z |
其中a∶b∶c=2∶3∶5,全校參與跳繩的人數(shù)占總?cè)藬?shù)的. 為了了解學(xué)生對(duì)本次活動(dòng)的滿意度,采用分層抽樣從中抽取一個(gè)200人的樣本進(jìn)行調(diào)查,則高二年級(jí)中參與跑步的同學(xué)應(yīng)抽取多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)命題中是假命題的是
A. “昆蟲都是6條腿,竹節(jié)蟲是昆蟲,所以竹節(jié)蟲有6條腿”此推理屬于演繹推理.
B. “在平面中,對(duì)于三條不同的直線, , ,若, 則,將此結(jié)論放到空間中也成立” 此推理屬于合情推理.
C. “”是“函數(shù) 存在極值”的必要不充分條件.
D. 若,則的最小值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為.
(1)求的普通方程和的傾斜角;
(2)設(shè)點(diǎn), 和交于兩點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).
(1)求的值;
(2)證明: 為上的增函數(shù);
(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓: 上一點(diǎn)向軸作垂線,垂足為右焦點(diǎn), 、分別為橢圓的左頂點(diǎn)和上頂點(diǎn),且, .
(Ⅰ)求橢圓的方程;
(Ⅱ)若動(dòng)直線與橢圓交于、兩點(diǎn),且以為直徑的圓恒過坐標(biāo)原點(diǎn).問是否存在一個(gè)定圓與動(dòng)直線總相切.若存在,求出該定圓的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com