【題目】已知橢圓:()的一個焦點(diǎn)與拋物線:的焦點(diǎn)重合,且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過焦點(diǎn)的直線與拋物線交于,兩點(diǎn),與橢圓交于,兩點(diǎn),滿足,求直線的方程.
【答案】(1)(2)
【解析】
(1)根據(jù)題意求出,即可寫出橢圓的標(biāo)準(zhǔn)方程.
(2)當(dāng)直線不存在斜率時,可求出四點(diǎn),可驗證;當(dāng)直線存在斜率時,設(shè)直線方程為,將直線分別與橢圓方程、拋物線方程聯(lián)立,利用弦長公式和焦點(diǎn)弦公式求出、,根據(jù)解方程即可.
解:(1)由已知橢圓的離心率,,得,則,
故橢圓的標(biāo)準(zhǔn)方程為
(2)當(dāng)直線不存在斜率時,可求出,,,,
所以,,不滿足條件;
當(dāng)直線存在斜率時,設(shè)直線方程為,代入橢圓方程得:
,恒成立,
設(shè),,則
∴
將直線:,代入拋物線得,
設(shè),,則,
又因為,
由得:,∴,
解得,
所以直線的方程為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為雙曲線的左、右焦點(diǎn),過作垂直于軸的直線,在軸的上方交雙曲線C于點(diǎn)M,且
(1)求雙曲線C的方程;
(2)過雙曲線C上任意一點(diǎn)P作該雙曲線兩條漸近線的垂線,垂足分別為求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題
①命題“若,則”的逆命題是真命題;
②若,,則在上的投影是;
③在的二項展開式中,有理項共有4項;
④已知一組正數(shù),,,的方差為,則數(shù)據(jù),,,的平均數(shù)為4;
⑤復(fù)數(shù)的共軛復(fù)數(shù)是,則.
其中真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù);
(1)當(dāng)時,解不等式;
(2)若,且在閉區(qū)間上有實數(shù)解,求實數(shù)的范圍;
(3)如果函數(shù)的圖象過點(diǎn),且不等式對任意均成立,求實數(shù)的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sinx-xcosx-x,f′(x)為f(x)的導(dǎo)數(shù).
(1)證明:f′(x)在區(qū)間(0,π)存在唯一零點(diǎn);
(2)若x∈[0,π]時,f(x)≥ax,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把方程表示的曲線作為函數(shù)的圖象,則下列結(jié)論正確的有( )
A.的圖象不經(jīng)過第一象限
B.在上單調(diào)遞增
C.的圖象上的點(diǎn)到坐標(biāo)原點(diǎn)的距離的最小值為
D.函數(shù)不存在零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直二面角α﹣l﹣β中,A∈α,B∈β,A,B都不在l上,AB與α所成角為x,AB與β所成角為y,AB與l所成角為z,則cos2x+cos2y+sin2z的值為( 。
A.B.2C.3D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為、,離心率為,點(diǎn)是橢圓上的一個動點(diǎn),且面積的最大值為.
(1)求橢圓的方程;
(2)過點(diǎn)作直線交橢圓于、兩點(diǎn),過點(diǎn)作直線的垂線交圓:于另一點(diǎn).若的面積為3,求直線的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com