【題目】如圖所示,正四棱錐P﹣ABCD中,側棱PA與底面ABCD所成的角的正切值為

1)求側面PAD與底面ABCD所成的二面角的大。

2)若EPB的中點,求異面直線PDAE所成角的正切值;

3)問在棱AD上是否存在一點F,使EF⊥側面PBC,若存在,試確定點F的位置;若不存在,說明理由.

【答案】1∠PMO=60°;(2;(3F為四等分點

【解析】試題分析:(1)取AD中點M,設PO⊥ABCD,連MO、PM,則∠PMO為二面角的平面角,設AB=a,則可利用tan∠PAO表示出AOPO,進而根據(jù)求得tan∠PMO的值,則∠PMO可知.

2)連OE,OE∥PD,∠OEA為異面直線PDAE所成的角.根據(jù)AO⊥BOAO⊥PO判斷出AO⊥平面PBD,進而可推斷AO⊥OE,進而可知進而可知∠AEO為直線PDAE所成角,根據(jù)勾股定理求得PD,進而求得OE,則tan∠AEO可求得.

3)延長MOBCN,取PN中點G,連EG、MG.先證出平面PMN和平面PBC垂直,再通過已知條件證出MG⊥平面PBC,取AM中點F,利用EG∥MF,推斷出,可知EF∥MG.最后可推斷出EF⊥平面PBC.即F為四等分點.

解:(1)取AD中點M,設PO⊥ABCD,連MOPM,則∠PMO為二面角的平面角,∠PAO為側棱PA與底面ABCD所成的角,,

PO=AOtan∠PAO=,

∴∠PMO=60°

2)連OEOE∥PD,∠OEA為異面直線PDAE所成的角.

3)延長MOBCN,取PN中點G,連EGMG

AM中點F,∵EG∥MF∴

∴EF∥MG

∴EF⊥平面PBC

F為四等分點

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某志愿者到某山區(qū)小學支教,為了解留守兒童的幸福感,該志愿者對某班40名學生進行了一次幸福指數(shù)的調查問卷,并用莖葉圖表示如下(注:圖中幸福指數(shù)低于70,說明孩子幸福感弱;幸福指數(shù)不低于70,說明孩子幸福感強).

(Ⅰ)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷能否有的把握認為孩子的幸福感強與是否是留守兒童有關?

(Ⅱ)從15個留守兒童中按幸福感強弱進行分層抽樣,共抽取5人,又在這5人中隨機抽取2人進行家訪,求這2個學生中恰有一人幸福感強的概率.

參考公式: ; 附表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R的奇函數(shù)滿足,且時, ,下面四種說法①;②函數(shù)在[-6,-2]上是增函數(shù);③函數(shù)關于直線對稱;④若,則關于的方程在[-8,8]上所有根之和為-8,其中正確的序號__________。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 ,一直線過點 ,

①若直線在兩坐標軸上截距之和為12,求直線的方程;

②若直線 軸正半軸交于 兩點,當面積為 時求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知在多面體ABCDEF中,ABCD為正方形,EF平面ABCD,M為FC的中點,AB=2,EF到平面ABCD的距離為2,F(xiàn)C=2.

(1)證明:AF平面MBD;

(2)若EF=1,求VF﹣MBE

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中實數(shù)

(Ⅰ)判斷是否為函數(shù)的極值點,并說明理由;

(Ⅱ)若在區(qū)間上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在拋物線 的準線上,記的焦點為,過點且與軸垂直的直線與拋物線交于, 兩點,則線段的長為( )

A. 4 B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為2的正方形, ,且, 中點.

(Ⅰ)求證: 平面;  

求二面角的平面角的余弦.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在中, 的中點為,且,點的延長線上,且.固定邊,在平面內移動頂點,使得圓與邊,邊的延長線相切,并始終與的延長線相切于點,記頂點的軌跡為曲線.以所在直線為軸, 為坐標原點如圖所示建立平面直角坐標系.

(Ⅰ)求曲線的方程;

(Ⅱ)設動直線交曲線兩點,且以為直徑的圓經(jīng)過點,求面積的取值范圍.

查看答案和解析>>

同步練習冊答案