【題目】已知a∈R,函數(shù)f(x)= +alnx﹣3x,g(x)=﹣x2+8x,且x=1是函數(shù)f(x)的極大值點(diǎn).
(1)求a的值.
(2)如果函數(shù)y=f(x)和函數(shù)y=g(x)在區(qū)間(b,b+1)上均為增函數(shù),求實(shí)數(shù)b的取值范圍.

【答案】
(1)解:因?yàn)楹瘮?shù) (x>0)

所以f′(x)=x+ ﹣3,(x>0),

又因?yàn)閤=1是函數(shù)f(x)的極大值點(diǎn).

所以 ,解得a=2

檢驗(yàn):當(dāng)a=2時, (x>0)

當(dāng)x∈(0,1),(2,+∞)時,f′(x)>0,當(dāng)x∈(1,2)時,f′(x)<0,

所以x=1是函數(shù)f(x)的極大值點(diǎn),a=2符合題意


(2)解:g(x)=﹣x2+8x=﹣(x﹣4)2+16

所以函數(shù)g(x)的單調(diào)遞增區(qū)間是(4,+∞)

又由(1)可知函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,1),(2,+∞)

所以依題意得

解得 b=0或 2≤b≤3

所以實(shí)數(shù)b的取值范圍是{0}∪[2,3]


【解析】(1)因?yàn)楹瘮?shù) (x>0),求出導(dǎo)函數(shù),利用x=1是函數(shù)f(x)的極大值點(diǎn).求出a.然后驗(yàn)證即可.(2)求出函數(shù)g(x)的單調(diào)遞增區(qū)間.又由(1)可知函數(shù)f(x)的單調(diào)遞增區(qū)間是(0,1),(2,+∞),列出不等式組,求解b 的范圍即可.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的極值與導(dǎo)數(shù)的相關(guān)知識點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側(cè),右側(cè),那么是極大值(2)如果在附近的左側(cè),右側(cè),那么是極小值才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a>0且a≠1,函數(shù)y=a2x+2ax﹣1在[﹣1,1]的最大值是14,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知常數(shù),在矩形ABCD中, ,OAB的中點(diǎn),點(diǎn)EF、G分別在BCCD、DA上移動,且,PGEOF的交點(diǎn)(如圖),問是否存在兩個定點(diǎn),使P到這兩點(diǎn)的距離的和為定值?若存在,求出這兩點(diǎn)的坐標(biāo)及此定值;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 中, 分別為兩腰上的高、求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2+2x+a=0上存在兩點(diǎn)關(guān)于直線l:mx+y+1=0對稱. (Ⅰ)求m的值;
(Ⅱ)直線l與圓C交于A,B兩點(diǎn), =﹣3(O為坐標(biāo)原點(diǎn)),求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查了解某省屬師范大學(xué)師范類畢業(yè)生參加工作后,從事的工作與教育是否有關(guān)的情況,該校隨機(jī)調(diào)查了該校80位性別不同的2016年師范類畢業(yè)大學(xué)生,得到具體數(shù)據(jù)如下表:

與教育有關(guān)

與教育無關(guān)

合計

30

10

40

35

5

40

合計

65

15

80

1)能否在犯錯誤的概率不超過5%的前提下,認(rèn)為師范類畢業(yè)生從事與教育有關(guān)的工作與性別有關(guān)?

參考公式:).

附表:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.023

6.635

2)求這80位師范類畢業(yè)生從事與教育有關(guān)工作的頻率;

3)以(2)中的頻率作為概率.該校近幾年畢業(yè)的2000名師范類大學(xué)生中隨機(jī)選取4名,記這4名畢業(yè)生從事與教育有關(guān)的人數(shù)為,求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=f(x)+x是偶函數(shù),且f(2)=lg32+log416+6lg +lg ,若g(x)=f(x)+1,則g(﹣2)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log3(ax2+3x+4)
(1)若f(1)<2,求a的取值范圍
(2)若a=1,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在(﹣1,+∞)內(nèi)的增函數(shù),且f(xy)=f(x)+f(y)若f(3)=1且f(a)>f(a﹣1)+2
求:
(1)f(9)的值,
(2)求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案