【題目】已知向量,向量與向量的夾角為,且.
(1)求向量;
(2)設(shè)向量,向量,其中,若,試求的取值范圍.
【答案】(1)或(2)
【解析】
(1)設(shè)向量=(x,y),由已知中向量=(1,1),向量與向量夾角為,且=﹣1.根據(jù)向量數(shù)量積的運(yùn)算法則,可得到關(guān)于x,y的方程組,解方程可得向量的坐標(biāo);(2)由向量=(1,0)向量,其中(,),其中,,若=0,我們可以求出2的表達(dá)式,利用三角函數(shù)的性質(zhì)可得的取值范圍.
(1)設(shè)向量=(x,y),∵向量=(1,1),
則=x+y=﹣1…①=||||cos=﹣1,
即x2+y2=1
解得x=0,y=﹣1或x=﹣1,y=0
故=(﹣1,0
(2)∵向量=(1,0),⊥,則=(0,﹣1),
又∵向量=(cosx,cos2(﹣)),
∴+=(cosx,cos2(﹣)﹣1)=(cosx, ),
則|+|2=cos2x+=cos2x-sinx+=- ,
∵,,, |+|2
故|+|≤
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線經(jīng)過坐標(biāo)原點(diǎn),求的值;
(2)若存在極小值,使不等式恒成立,求實(shí)數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】濱海市政府今年加大了招商引資的力度,吸引外資的數(shù)量明顯增加.一外商計(jì)劃在濱海市投資兩個項(xiàng)目,總投資20億元,其中甲項(xiàng)目的10年收益額(單位:億元)與投資額(單位:億元)滿足,乙項(xiàng)目的10年收益額(單位:億元)與投資額(單位:億元)滿足,并且每個項(xiàng)目至少要投資2億元.設(shè)兩個項(xiàng)目的10年收益額之和為.
(1)求;
(2)如何安排甲、乙兩個項(xiàng)目的投資額,才能使這兩個項(xiàng)目的10年收益額之和最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于函數(shù),定義f1(x)=f(x),fn+1(x)=f[fn(x)](n∈N*),已知偶函數(shù)g(x)的定義域?yàn)椋ī仭蓿?)∪(0,+∞),g(1)=0,當(dāng)x>0且x≠1時,g(x)=f2018(x).
(1)求f2(x),f3(x),f4(x),f2018(x);
(2)求出函數(shù)y=g(x)的解析式;
(3)若存在實(shí)數(shù)a、b(a<b),使得函數(shù)g(x)在[a,b]上的值域?yàn)閇mb,ma],求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓上一點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)為B,F(xiàn)為橢圓的右焦點(diǎn),AF⊥BF,∠ABF=,,,則橢圓的離心率的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,且橢圓的短軸長為2.
(1)球橢圓的標(biāo)準(zhǔn)方程;
(2)已知直線過右焦點(diǎn),且它們的斜率乘積為,設(shè)分別與橢圓交于點(diǎn)和.
①求的值;
②設(shè)的中點(diǎn),的中點(diǎn)為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點(diǎn)為,準(zhǔn)線為,是拋物線上的兩個動點(diǎn),且滿足.設(shè)線段的中點(diǎn)在上的投影為,則的最大值是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)).
(1)求和的直角坐標(biāo)方程;
(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓上一點(diǎn),分別為關(guān)于軸,原點(diǎn),軸的對稱點(diǎn),
(1)求四邊形面積的最大值;
(2)當(dāng)四邊形最大時,在線段上任取一點(diǎn),若過的直線與橢圓相交于兩點(diǎn),且中點(diǎn)恰為,求直線斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com