【題目】已知二次函數(shù)的圖像與x軸有兩個不同的交點,其中一個交點坐標是,且當(dāng)時,恒有.
(1)求不等式的解(用a、c表示);
(2)若不等式對所有恒成立,求實數(shù)m的取值范圍.
【答案】(1) ;(2) 或或
【解析】
(1)根據(jù)二次函數(shù)的圖像與x軸有兩個不同的交點可知有兩個不同的實數(shù)根,利用過與韋達定理可求得的兩根,再根據(jù)二次函數(shù)開口方向求解即可.
(2)由題可得,代入有,對所有恒成立,再分與0的大小關(guān)系分類討論即可.
(1) 的圖像與x軸有兩個不同的交點,且過可設(shè)另一個根為,利用韋達定理有,又,且當(dāng)時,恒有,則.
∴的解集為
(2)∵∴,
又∵,∴
故要使即,對所有恒成立,則
當(dāng)時, 恒成立,故
當(dāng)時, 恒成立,故
當(dāng)時, 對所有恒成立
從而實數(shù)的取值范圍為或或
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:
①y=f(x)的表達式可改寫為y=4cos(2x﹣);
②y=f(x)是以2π為最小正周期的周期函數(shù);
③y=f(x)的圖象關(guān)于點對稱;
④y=f(x)的圖象關(guān)于直線x=﹣對稱.
其中正確的命題的序號是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件需另投人成本萬元.當(dāng)年產(chǎn)量不足80千件時,(萬元);當(dāng)年產(chǎn)量不小于80千件時,萬元,每千件產(chǎn)品的售價為50萬元,該廠生產(chǎn)的產(chǎn)品能全部售完.
(1)寫出年利潤萬元關(guān)于千件的函數(shù)關(guān)系式;
(2)當(dāng)年產(chǎn)量為多少千件時該廠當(dāng)年的利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程
(1)若,是一枚骰子擲兩次所得到的點數(shù),求方程有兩正根的概率.
(2)若,,求方程沒有實根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體P﹣ABCD中,平面ABCD⊥平面PAB ,四邊形ABCD為矩形,△PAB為正三角形,若AB=2,AD=1,E,F(xiàn) 分別為AC,BP中點.
(1)求證:EF∥平面PCD;
(2)求直線DP與平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)任意向軸上這一區(qū)間內(nèi)投擲一個點,則該點落在區(qū)間內(nèi)的概率是多少?
(2)已知向量,,若,分別表示一枚質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現(xiàn)的點數(shù),求滿足的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某公司生產(chǎn)某款手機的年固定成本為40萬元,每生產(chǎn)1萬只還需另投入16萬元.設(shè)該公司一年內(nèi)共生產(chǎn)該款手機萬只并全部銷售完,每萬只的銷售收入為萬元,且
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬只時,該公司在該款手機的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com