【題目】已知等比數(shù)列{an}的公比q>1,且a1+a3=20,a2=8. (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè) ,Sn是數(shù)列{bn}的前n項(xiàng)和,對(duì)任意正整數(shù)n不等式 恒成立,求實(shí)數(shù)a的取值范圍.
【答案】解:(Ⅰ)設(shè)數(shù)列{an}的公比為q,a1+a3=20,a2=8.
則 ,
∴2q2﹣5q+2=0
∵公比q>1,∴ ,∴數(shù)列{an}的通項(xiàng)公式為 .
(Ⅱ)解:∴
Sn=
∴
∴Sn= =
∴ 對(duì)任意正整數(shù)n恒成立,設(shè) ,易知f(n)單調(diào)遞增.
n為奇數(shù)時(shí),f(n)的最小值為 ,∴ 得 ,
n為偶數(shù)時(shí),f(n)的最小值為 ,∴ ,
綜上, ,即實(shí)數(shù)a的取值范圍是 .
【解析】(Ⅰ)設(shè)數(shù)列{an}的公比為q,l利用a1+a3=20,a2=8.列出方程組,求出首項(xiàng)與公比然后求解通項(xiàng)公式.(Ⅱ)利用錯(cuò)位相減法求和求出Sn,∴ 對(duì)任意正整數(shù)n恒成立,設(shè) ,f(n)單調(diào)遞增.通過n為奇數(shù)時(shí),n為偶數(shù)時(shí),分別f(n)的最小值,求解實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三角形ABC的邊長為2,AM是邊BC上的高,沿AM將△ABM折起,使得二面角B﹣AM﹣C的大小為90°,此時(shí)點(diǎn)M到平面ABC的距離為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)有劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時(shí),多邊形的面積可無限逼近圓的面積,并創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的“徽率”.某同學(xué)利用劉徽的“割圓術(shù)”思想設(shè)計(jì)了一個(gè)計(jì)算圓周率的近似值的程序框圖如圖,則輸出S的值為 (參考數(shù)據(jù):sin15°=0.2588,sin7.5°=0.1305)( )
A.2.598
B.3.106
C.3.132
D.3.142
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C的對(duì)邊分別是a,b,c且滿足(2a﹣c)cosB=bcosC,
(1)求角B的大;
(2)若△ABC的面積為為 且b= ,求a+c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(3x+ ).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若α是第二象限角,f( )= cos(α+ )cos2α,求cosα﹣sinα的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年3月14日,“ofo共享單車”終于來到蕪湖,ofo共享單車又被親切稱作“小黃車”是全球第一個(gè)無樁共享單車平臺(tái),開創(chuàng)了首個(gè)“單車共享”模式.相關(guān)部門準(zhǔn)備對(duì)該項(xiàng)目進(jìn)行考核,考核的硬性指標(biāo)是:市民對(duì)該項(xiàng)目的滿意指數(shù)不低于0.8,否則該項(xiàng)目需進(jìn)行整改,該部門為了了解市民對(duì)該項(xiàng)目的滿意程度,隨機(jī)訪問了使用共享單車的100名市民,并根據(jù)這100名市民對(duì)該項(xiàng)目滿意程度的評(píng)分,繪制了如下頻率分布直方圖:
(I)為了了解部分市民對(duì)“共享單車”評(píng)分較低的原因,該部門從評(píng)分低于60分的市民中隨機(jī)抽取2人進(jìn)行座談,求這2人評(píng)分恰好都在[50,60)的概率;
(II)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該項(xiàng)目能否通過考核,并說明理由.
(注:滿意指數(shù)= )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊.
(1)若△ABC面積S△ABC= ,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,試判斷△ABC的形狀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com