【題目】設(shè)數(shù)列滿足

(1)求的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和

【答案】(1);(2).

【解析】

(1)在中,將得: ,由兩式作商得:,問題得解。

(2)利用(1)中結(jié)果求得,分組求和,再利用等差數(shù)列前項(xiàng)和公式及乘公比錯(cuò)位相減法分別求和即可得解。

(1)由n=1得,

因?yàn)?/span>,

當(dāng)n≥2時(shí),,

由兩式作商得:(n>1且n∈N*),

又因?yàn)?/span>符合上式,

所以(n∈N*).

(2)設(shè),

則bn=n+n·2n,

所以Sn=b1+b2+…+bn=(1+2+…+n)+

設(shè)Tn=2+2·22+3·23+…+(n-1)·2n-1+n·2n,①

所以2Tn=22+2·23+…(n-2)·2n-1+(n-1)·2n+n·2n+1,②

①-②得:-Tn=2+22+23+…+2n-n·2n+1,

所以Tn=(n-1)·2n+1+2.

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一元二次函數(shù)

1)寫出該函數(shù)的頂點(diǎn)坐標(biāo);

2)如果該函數(shù)在區(qū)間上的最小值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對(duì)某種食材營養(yǎng)價(jià)值的認(rèn)識(shí)程度,某檔健康養(yǎng)生電視節(jié)目組織名營養(yǎng)專家和名現(xiàn)場(chǎng)觀眾各組成一個(gè)評(píng)分小組,給食材的營養(yǎng)價(jià)值打分(十分制).下面是兩個(gè)小組的打分?jǐn)?shù)據(jù):

第一小組

第二小組

(1)求第一小組數(shù)據(jù)的中位數(shù)與平均數(shù),用這兩個(gè)數(shù)字特征中的哪一種來描述第一小組打分的情況更合適?說明你的理由.

(2)你能否判斷第一小組與第二小組哪一個(gè)更像是由營養(yǎng)專家組成的嗎?請(qǐng)比較數(shù)字特征并說明理由.

(3)節(jié)目組收集了烹飪?cè)撌巢牡募訜釙r(shí)間:(單位:)與其營養(yǎng)成分保留百分比的有關(guān)數(shù)據(jù):

食材的加熱時(shí)間(單位:

營養(yǎng)成分保留百分比

在答題卡上畫出散點(diǎn)圖,求關(guān)于的線性回歸方程(系數(shù)精確到),并說明回歸方程中斜率的含義.

附注:參考數(shù)據(jù):,.

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,分別是的中點(diǎn),且.

1)求直線所成角的大。

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為調(diào)查該校學(xué)生每周使用手機(jī)上網(wǎng)的時(shí)間,隨機(jī)收集了若干位學(xué)生每周使用手機(jī)上網(wǎng)的時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)),將樣本數(shù)據(jù)分組為,繪制了如下圖所示的頻率分布直方圖,已知內(nèi)的學(xué)生有5人.

(1)求樣本容量,并估計(jì)該校學(xué)生每周平均使用手機(jī)上網(wǎng)的時(shí)間;

(2)將使用手機(jī)上網(wǎng)的時(shí)間在內(nèi)定義為“長時(shí)間看手機(jī)”;使用手機(jī)上網(wǎng)的時(shí)間在內(nèi)定義為“不長時(shí)間看手機(jī)”.已知在樣本中有位學(xué)生不近視,其中“不長時(shí)間看手機(jī)”的有位學(xué)生.請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為該校學(xué)生長時(shí)間看手機(jī)與近視有關(guān).

近視

不近視

合計(jì)

長時(shí)間看手機(jī)

不長時(shí)間看手機(jī)

15

合計(jì)

25

參考公式和數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,,,的中點(diǎn).

(1)證明:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象在處的切線方程為,求,的值;

(2)若,,使成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣

(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;

(2)若f(x)在[1,e]上的最小值為,求實(shí)數(shù)a的值;

(3)若f(x)<x2在(1,+∞)上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x﹣4.設(shè)圓C的半徑為1,圓心在l上.

(1)若圓心C也在直線y=x﹣1上,過點(diǎn)A作圓C的切線,求切線的方程;
(2)若圓C上存在點(diǎn)M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案