【題目】假設你家訂了一份報紙,送報人可能在早上6點—8點之間把報紙送到你家,你每天離家去工作的時間在早上7點—9點之間.
問:離家前不能看到報紙(稱事件)的概率是多少?(須有過程)
【答案】.
【解析】試題分析:設送報人到達的時間為X,小王離家去工作的時間為Y,(X,Y)可以看成平面中的點,試驗的全部結果所構成的區(qū)域為Ω={(x,y)|6≤X≤8,7≤Y≤9}一個正方形區(qū)域,求出其面積,事件A表示小王離家前不能看到報紙,所構成的區(qū)域為A={(X,Y)|6≤X≤8,7≤Y≤9,X>Y}求出其面積,根據(jù)幾何概型的概率公式解之即可;
試題解析:
如圖,設送報人到達的時間為,小王離家去工作的時間為.(, )可以看成平面中的點,
試驗的全部結果所構成的區(qū)域為一個正方形區(qū)域,面積為,
事件表示小王離家前不能看到報紙,
所構成的區(qū)域為即圖中的陰影部分,面積為.
這是一個幾何概型,所以.
答:小王離家前不能看到報紙的概率是0.125.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1中,∠ACB=90°,E是棱CC1上的動點,F(xiàn)是AB的中點,AC=BC=2,AA1=4.
(1)當E是棱CC1的中點時,求證:CF∥平面AEB1;
(2)在棱CC1上是否存在點E,使得二面角A﹣EB1﹣B的大小是45°?若存在,求出CE的長,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖四棱錐E﹣ABCD中,四邊形ABCD為平行四邊形,△BCE為等邊三角形,△ABE是以∠A為直角的等腰直角三角形,且AC=BC.
(Ⅰ)證明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A﹣DE﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,正方體的棱長為1,線段上有兩個動點,且,則下列結論中正確的是__________.
①平面;
②平面平面;
③三棱錐的體積為定值;
④存在某個位置使得異面直線與成角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 是定義在上的奇函數(shù).
(1)求的值和實數(shù)的值;
(2)判斷函數(shù)在上的單調性,并給出證明;
(3)若且求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2018年1曰8日,中共中央、國務院隆重舉行國家科學技術獎勵大會,在科技界引發(fā)熱烈反響,自主創(chuàng)新正成為引領經(jīng)濟社會發(fā)展的強勁動力.某科研單位在研發(fā)新產(chǎn)品的過程中發(fā)現(xiàn)了一種新材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標值與這種新材料的含量(單位:克)的關系為:當時, 是的二次函數(shù);當時, .測得數(shù)據(jù)如表(部分)
(1)求關于的函數(shù)關系式;
(2)其函數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Acos2(ωx+φ)+1(A>0,ω>0)的最大值為3,f(x)的圖象在y軸上的截距為2,其相鄰兩對稱軸間的距離為1,則f(1)+f(2)+f(3)+…+f(100)=( )
A.0
B.100
C.150
D.200
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),有如下結論
①函數(shù)f(x)的值域是[-1,1];
②函數(shù)f(x)的減區(qū)間為[1,3];
③若存在實數(shù)x1、x2、x3、x4,滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則x1+x2<0;
④在③的條件下x3+x4=6;
⑤若方程f(x)=a有3個解,則<a≤1
其中正確的是
A. ①②③ B. ③④⑤ C. ②③⑤ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com