【題目】下列3個(gè)命題: 1)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
2)若函數(shù)f(x)=ax2+bx+2與x軸沒(méi)有交點(diǎn),則b2﹣8a<0且a>0;
3)y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).
其中正確命題的個(gè)數(shù)是( )
A.0
B.1
C.2
D.3
【答案】A
【解析】解:(1)函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù),不正確,舉反例f(x)= ;(2)若函數(shù)f(x)=ax2+bx+2與x軸沒(méi)有交點(diǎn),則b2﹣8a<0且a>0或a=b=0,因此不正確;(3)y=x2﹣2|x|﹣3= ,其遞增區(qū)間為[﹣1,0]或[1,+∞),因此不正確. 其中正確命題的個(gè)數(shù)是0.
故選:A.
(1)不正確,舉反例f(x)= ;(2)若函數(shù)f(x)的圖象與x軸沒(méi)有交點(diǎn),則b2﹣8a<0且a>0或a=b=0,因此不正確;(3)y=x2﹣2|x|﹣3= ,其遞增區(qū)間為[﹣1,0]或[1,+∞),即可判斷出正誤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:方程 表示焦點(diǎn)在y軸上的橢圓,命題q:關(guān)于x的方程x2+2mx+2m+3=0無(wú)實(shí)根,若“p∧q”為假命題,“p∨q”為真命題,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 =1(a>b>0)的離心率為 ,右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)F重合.
(1)求橢圓的方程;
(2)過(guò)F的直線l交橢圓于A、B兩點(diǎn),橢圓的左焦點(diǎn)力F',求△AF'B的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工藝廠有銅絲5萬(wàn)米,鐵絲9萬(wàn)米,準(zhǔn)備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設(shè)該廠用所有原來(lái)編制個(gè)花籃, 個(gè)花盆.
(Ⅰ)列出滿足的關(guān)系式,并畫(huà)出相應(yīng)的平面區(qū)域;
(Ⅱ)若出售一個(gè)花籃可獲利300元,出售一個(gè)花盤(pán)可獲利200元,那么怎樣安排花籃與花盆的編制個(gè)數(shù),可使得所得利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(x2﹣bx)(b∈R)在區(qū)間[ ,2]上存在單調(diào)遞增區(qū)間,則實(shí)數(shù)b的取值范圍是( )
A.(﹣∞, )
B.(﹣∞, )
C.(﹣ , )
D.( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%和50%,可能的最大虧損分別為30%和10%.投資人計(jì)劃投資金額不超過(guò)10萬(wàn)元,要求確保可能的資金虧損不超過(guò)1.8萬(wàn)元.問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬(wàn)元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(),其中為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性及極值;
(2)若不等式在內(nèi)恒成立,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x﹣alnx,(a∈R).
(1)討論函數(shù)f(x)在定義域內(nèi)的極值點(diǎn)的個(gè)數(shù);
(2)設(shè)g(x)=﹣ ,若不等式f(x)>g(x)對(duì)任意x∈[1,e]恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)設(shè)是的導(dǎo)函數(shù),求函數(shù)的極值;
(2)是否存在常數(shù),使得時(shí), 恒成立,且有唯一解,若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com