已知對
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052647841452.png)
,直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052647856571.png)
與橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052647872744.png)
恒有公共點(diǎn),則實數(shù)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052647903337.png)
的取值范圍是( )
A.(0, 1) | B.(0,5) | C.[1,5) | D.[1,5)∪(5,+∞) |
試題分析:由于直線y=kx+1恒過點(diǎn)M(0,1)
要使直線y=kx+1與橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052647872744.png)
恒有公共點(diǎn),則只要M(0,1)在橢圓的內(nèi)部或在橢圓上
從而有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240526479341296.png)
,解可得m≥1且m≠5,故選D.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615612396.png)
:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240546156271089.png)
的短軸長為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615643379.png)
,且斜率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615659337.png)
的直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615674314.png)
過橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615612396.png)
的焦點(diǎn)及點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615705598.png)
.
(1)求橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615612396.png)
的方程;
(2)已知直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615752339.png)
過橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615612396.png)
的左焦點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615783302.png)
,交橢圓于點(diǎn)P、Q.
(ⅰ)若滿足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615799871.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615815292.png)
為坐標(biāo)原點(diǎn)),求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615830544.png)
的面積;
(ⅱ)若直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615752339.png)
與兩坐標(biāo)軸都不垂直,點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615861400.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615877275.png)
軸上,且使
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615893472.png)
為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615908596.png)
的一條角平分線,則稱點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615861400.png)
為橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615612396.png)
的“特征點(diǎn)”,求橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054615612396.png)
的特征點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240541563081170.png)
過點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054156339524.png)
,且離心率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054156355459.png)
.斜率為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054156371206.png)
的直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054156386280.png)
與橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054156402316.png)
交于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054156433423.png)
兩點(diǎn),以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054156449396.png)
為底邊作等腰三角形,頂點(diǎn)為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054156464554.png)
.
(1)求橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054156402316.png)
的方程;
(2)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054156495516.png)
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓C:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053411412710.png)
,點(diǎn)M與C的焦點(diǎn)不重合,若M關(guān)于C的焦點(diǎn)的對稱點(diǎn)分別為A,B,線段MN的中點(diǎn)在C上,則
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915136875.png)
經(jīng)過點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915152581.png)
,離心率
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915167463.png)
,直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915183278.png)
與橢圓交于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915199551.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915214554.png)
兩點(diǎn),向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915230340.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915245582.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915261306.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915292589.png)
,且
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915308424.png)
.
(1)求橢圓的方程;
(2)當(dāng)直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915183278.png)
過橢圓的焦點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915355449.png)
(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915355249.png)
為半焦距)時,求直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915183278.png)
的斜率
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052915401305.png)
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052342372675.png)
的一個焦點(diǎn)在拋物線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052342388525.png)
的準(zhǔn)線上,則該橢圓的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
[2014·焦作模擬]已知F1,F(xiàn)2是橢圓的兩個焦點(diǎn),橢圓上存在一點(diǎn)P,使∠F1PF2=60°,則橢圓離心率的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827751215.png)
:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240518277821006.png)
的左頂點(diǎn)為
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827782300.png)
,直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827813368.png)
交橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827751215.png)
于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827844423.png)
兩點(diǎn)(
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827860313.png)
上
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827860309.png)
下),動點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827875289.png)
和定點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827891574.png)
都在橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827751215.png)
上.
(1)求橢圓方程及四邊形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827938526.png)
的面積.
(2)若四邊形
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827938518.png)
為梯形,求點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827875289.png)
的坐標(biāo).
(3)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051827969435.png)
為實數(shù),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051828000910.png)
,求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824051828016443.png)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240504529611185.png)
過點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050452992894.png)
,且離心率
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050452992516.png)
.
(1)求橢圓C的方程;
(2)已知過點(diǎn)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050453008461.png)
的直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050453024280.png)
與該橢圓相交于A、B兩點(diǎn),試問:在直線
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050453039383.png)
上是否存在點(diǎn)P,使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050453055513.png)
是正三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>