如圖,在四邊形中,對(duì)角線于,,為的重心,過(guò)點(diǎn)的直線分別交于且‖,沿將折起,沿將折起,正好重合于.
(Ⅰ) 求證:平面平面;
(Ⅱ)求平面與平面夾角的大小.
(1)對(duì)于面面垂直的證明,主要是通過(guò)判定定理來(lái)分析得到,注意到平面是解題的關(guān)鍵。
(2)
解析試題分析:解:(Ⅰ) 由題知:
又 平面
平面 平面平面 6分
(Ⅱ) 如圖建立空間直角坐標(biāo)系
平面
平面的一個(gè)法向量為 8分
又
設(shè)平面的一個(gè)法向量為
取
平面與平面的夾角為 12分
考點(diǎn):空間中的面面位置關(guān)系
點(diǎn)評(píng):對(duì)于空間中的垂直的證明主要是熟練的運(yùn)用判定定理和性質(zhì)定理來(lái)證明,同時(shí)二面角的求解,一般采用向量法來(lái)得到,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且G是EF的中
點(diǎn).
(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角梯形PBCD中,,A為PD的中點(diǎn),如下左圖。將沿AB折到的位置,使,點(diǎn)E在SD上,且,如下圖。
(1)求證:平面ABCD;
(2)求二面角E—AC—D的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖:在多面體EF-ABCD中,四邊形ABCD是平行四邊形,△EAD為正三角形,且平面EAD平面ABCD,EF∥AB, AB=2EF=2AD=4,.
(Ⅰ)求多面體EF-ABCD的體積;
(Ⅱ)求直線BD與平面BCF所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐中,⊥平面,為的中點(diǎn),為 的中點(diǎn),底面是菱形,對(duì)角線,交于點(diǎn).
求證:(1)平面平面;
(2)平面⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點(diǎn)。
(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分l2分)
如圖,在多面體ABCDEF中,ABCD為菱形,ABC=60,EC面ABCD,F(xiàn)A面ABCD,G為BF的中點(diǎn),若EG//面ABCD.
(1)求證:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com