【題目】某中學為研究學生的身體素質(zhì)與體育鍛煉時間的關系,對該校名高三學生平均每天體育鍛煉時間進行調(diào)查,如表:(平均每天鍛煉的時間單位:分鐘)

將學生日均體育鍛煉時間在的學生評價為鍛煉達標

1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表:

并通過計算判斷,是否能在犯錯誤的概率不超過的前提下認為鍛煉達標與性別有關?

2)在鍛煉達標的學生中,按男女用分層抽樣方法抽出人,進行體育鍛煉體會交流.

i)求這人中,男生、女生各有多少人?

ii)從參加體會交流的人中,隨機選出人發(fā)言,記這人中女生的人數(shù)為,求的分布列和數(shù)學期望.

參考公式:,其中

臨界值表:

0.10

0.05

0.025

0.010

0

2.706

3.841

5.024

6.635

【答案】1)能;(2)(i)男生有人,女生有人;(ii,分布列見解析.

【解析】

1)根據(jù)所給數(shù)據(jù)可完成列聯(lián)表.由總?cè)藬?shù)及女生人數(shù)得男生人數(shù),由表格得達標人數(shù),從而得男生中達標人數(shù),這樣不達標人數(shù)隨之而得,然后計算可得結(jié)論;

2)由達標人數(shù)中男女生人數(shù)比為可得抽取的人數(shù),總共選2人,女生有4人,的可能值為0,1,2,分別計算概率得分布列,再由期望公式可計算出期望.

1)列出列聯(lián)表,

,

所以在犯錯誤的概率不超過的前提下能判斷課外體育達標與性別有關.

2)(i)在鍛煉達標的學生中,男女生人數(shù)比為,

用分層抽樣方法抽出人,男生有人,女生有人.

ii)從參加體會交流的人中,隨機選出人發(fā)言,人中女生的人數(shù)為,

的可能值為,,,

,,

可得的分布列為:

可得數(shù)學期望

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量,若的夾角為,則直線與圓的位置關系是(

A.相交但不過圓心B.相交且過圓心C.相切D.相離

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)存在兩個極值點,,且,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),.

1)判斷函數(shù):的單調(diào)性;

2)對于區(qū)間上的任意不相等實數(shù),都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)設,

①當時,求曲線在點處的切線方程;

②當時,求證:對任意恒成立.

2)討論的極值點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長均相等的四棱錐, 為底面正方形的中心, ,分別為側(cè)棱,的中點,有下列結(jié)論正確的有:( )

A.∥平面B.平面∥平面

C.直線與直線所成角的大小為D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱柱的側(cè)棱垂直于底面, ,點分別是的中點.

(1)證明:平面;

(2)設,當為何值時,平面,試證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性,并說明理由;

2)已知不等式上恒成立,求實數(shù)的最大值;

3)當時,求函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, 為等邊三角形,且平面平面, , , .

(Ⅰ)證明: ;

(Ⅱ)若直線與平面所成角為,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案