【題目】已知函數(shù).
(1)若函數(shù)f(x)在(0,+∞)上是減函數(shù),其實(shí)數(shù)m的取值范圍;
(2)若函數(shù)f(x)在(0,+∞)上存在兩個(gè)極值點(diǎn)x1,x2,證明:lnx1+lnx2>2.
【答案】(1).(2)證明見解析
【解析】
(1)由題知在上恒成立.參變分離求實(shí)數(shù)m的取值范圍即可.
(2)求導(dǎo)代入極值點(diǎn)分析滿足的關(guān)系式,再代換構(gòu)造出關(guān)于的方程,再換元證明不等式即可.
(1)由函數(shù)f(x)在(0,+∞)上是減函數(shù),可知,f′(x)=lnx﹣mx≤0恒成立,
∴m恒成立,故mmax,
令g(x),x>0,
則g′(x),
當(dāng)x∈(0,e),g′(x)0,g(x)單調(diào)遞增,
當(dāng)x∈(e,+∞),則g′(x)0,g(x)單調(diào)遞減,
g(x)max=g(e),
∴.
(2)由(1)f′(x)=lnx﹣mx,
由f(x)在(0,+∞)上存在兩個(gè)極值點(diǎn),不妨設(shè)x1<x2,
知,
則m,
又m,
∴,
即lnx1+lnx2,
設(shè)t∈(0,1),
要證明:lnx1+lnx2>2,
只要證,
只要證lnt,
即證lnt0,
構(gòu)造函數(shù)h(t)=lnt,
h′(t)0,
h(t)在(0,1)上單調(diào)遞增,
∴h(t)<h(1)=0,
即h(t)=lnt0,
∴lnx1+lnx2>2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場舉行購物抽獎(jiǎng)促銷活動(dòng),規(guī)定每位顧客從裝有0、1、2、3的四個(gè)相同小球的抽獎(jiǎng)箱中,每次取出一球記下編號后放回(連續(xù)取兩次),若取出的兩個(gè)小球的編號相加之和等于6,則中一等獎(jiǎng),等于5中二等獎(jiǎng),等于4或3中三等獎(jiǎng),則顧客抽獎(jiǎng)中三等獎(jiǎng)的概率為____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為,直線l過點(diǎn)且與x軸不重合,l交圓于C,D兩點(diǎn),過作的平行線,交于點(diǎn)E.設(shè)點(diǎn)E的軌跡為.
(1)求的方程;
(2)直線與相切于點(diǎn)M,與兩坐標(biāo)軸的交點(diǎn)為A與B,直線經(jīng)過點(diǎn)M且與垂直,與的另一個(gè)交點(diǎn)為N,當(dāng)取得最小值時(shí),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第28屆金雞百花電影節(jié)將于11月19日至23日在福建省廈門市舉辦,近日首批影展片單揭曉,《南方車站的聚會(huì)》《春江水暖》《第一次的離別》《春潮》《抵達(dá)之謎》五部優(yōu)秀作品將在電影節(jié)進(jìn)行展映.若從這五部作品中隨機(jī)選擇兩部放在展映的前兩位,則《春潮》與《抵達(dá)之謎》至少有一部被選中的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知點(diǎn)為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知點(diǎn),延長交拋物線于點(diǎn),證明:以點(diǎn)為圓心且與直線相切的圓,必與直線相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=|x﹣m|+|x|,m∈N*,存在實(shí)數(shù)x使f(x)<2成立.
(1)求實(shí)數(shù)m的值;
(2)若α≥1,β≥1,f(α)+f(β)=4,求證:≥3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在經(jīng)濟(jì)學(xué)中,函數(shù)的邊際函數(shù)定義為.某醫(yī)療設(shè)備公司生產(chǎn)某醫(yī)療器材,已知每月生產(chǎn)臺的收益函數(shù)為 (單位:萬元),成本函數(shù)(單位:萬元),該公司每月最多生產(chǎn)臺該醫(yī)療器材.(利潤函數(shù)=收益函數(shù)-成本函數(shù))
(1)求利潤函數(shù)及邊際利潤函數(shù);
(2)此公司每月生產(chǎn)多少臺該醫(yī)療器材時(shí)每臺的平均利潤最大,最大值為多少?(精確到)
(3)求為何值時(shí)利潤函數(shù)取得最大值,并解釋邊際利潤函數(shù)的實(shí)際意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系.
(1)求圓的普通方程及其極坐標(biāo)方程;
(2)設(shè)直線的極坐標(biāo)方程為,射線與圓的交點(diǎn)為(異于極點(diǎn)),與直線的交點(diǎn)為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),在線段上任取兩點(diǎn)(端點(diǎn)A,B除外 ),將線段分成了三條線段,若分成的三條線段長度均為正整數(shù),則這三條線段可以構(gòu)成三角形的概率是 ____________;若分成的三條線段的長度均為正實(shí)數(shù),則這三條線段可以構(gòu)成三角形的概率是 _________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com