【題目】已知橢圓 ,右頂點(diǎn)為 ,離心率為 ,直線 與橢圓 相交于不同的兩點(diǎn) , ,過 的中點(diǎn) 作垂直于 的直線 ,設(shè) 與橢圓 相交于不同的兩點(diǎn) , ,且 的中點(diǎn)為
(Ⅰ)求橢圓 的方程;
(Ⅱ)設(shè)原點(diǎn) 到直線 的距離為 ,求 的取值范圍.

【答案】解:(Ⅰ) .(Ⅱ)由
設(shè) , ,則

: ,即
,
設(shè) , ,


=

所以 = . 令
=
【解析】(Ⅰ)運(yùn)用離心率公式和a,b,c的關(guān)系,解得a,b,進(jìn)而得到橢圓方程;
(Ⅱ)設(shè)出AB的方程,代入橢圓方程,運(yùn)用韋達(dá)定理,可得中點(diǎn)的坐標(biāo),再設(shè)直線CD的方程,代入橢圓方程,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式和點(diǎn)到直線的距離公式,再由二次函數(shù)的最值,即可得到范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,E、F分別為PC、BD的中點(diǎn),側(cè)面PAD⊥底面ABCD.

(1)求證:EF∥平面PAD;

(2)若EF⊥PC,求證:平面PAB⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了考查兩個(gè)變量之間的線性關(guān)系,甲、乙兩位同學(xué)各自獨(dú)立作了次和次試驗(yàn),并且利用線性回歸方法,求得回歸直線分別為、,已知兩人得的試驗(yàn)數(shù)據(jù)中,變量的數(shù)據(jù)的平均值都相等,且分別都是,那么下列說法正確的是( )

A. 直線一定有公共點(diǎn) B. 必有直線

C. 直線相交,但交點(diǎn)不一定是 D. 必定重合

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣x2﹣lnx存在極值,若這些極值的和大于5+ln2,則實(shí)數(shù)a的取值范圍為(
A.(﹣∞,4)
B.(4,+∞)
C.(﹣∞,2)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四棱錐C﹣ABDE中,DB⊥平面ABC,AE∥DB,△ABC是邊長(zhǎng)為2的等邊三角形,AE=1,M為AB的中點(diǎn).
(1)求證:CM⊥EM;
(2)若直線DM與平面ABC所成角的正切值為2,求二面角B﹣CD﹣E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)工會(huì)利用“健步行” 開展健步走積分獎(jiǎng)勵(lì)活動(dòng).會(huì)員每天走5 千步可獲積分30分(不足5千步不積分), 每多走2千步再積20分(不足2千步不積分).為了解會(huì)員的健步走情況,工會(huì)在某天從系統(tǒng)中隨機(jī)抽取了 1000名會(huì)員,統(tǒng)計(jì)了當(dāng)天他們的步數(shù),并將樣本數(shù)據(jù)分為,九組,整理得到如圖頻率分布直方圖:

(1)求當(dāng)天這1000名會(huì)員中步數(shù)少于11千步的人數(shù);

(2)從當(dāng)天步數(shù)在的會(huì)員中按分層抽樣的方式抽取6人,再?gòu)倪@6人中隨機(jī)抽取2人,求這2人積分之和不少于200分的概率;

(3)寫出該組數(shù)據(jù)的中位數(shù)(只寫結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從萬州二中高二年級(jí)文科學(xué)生中隨機(jī)抽取60名學(xué)生,將其月考的政治成績(jī)(均為整數(shù))分成六段:后得到如下頻率分布直方圖.

(1)求分?jǐn)?shù)在內(nèi)的頻率;

(2)用分層抽樣的方法在80分以上(含 80分)的學(xué)生中抽取一個(gè)容量為6的樣本, 從該樣本中任意選取2人,求其中恰有1 人的分?jǐn)?shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2cos ,數(shù)列{an}中,an=f(n)+f(n+1)(n∈N*),則數(shù)列{an}的前100項(xiàng)之和S100=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn) 分別是Δ 的邊 的中點(diǎn),連接 .現(xiàn)將 沿 折疊至Δ 的位置,連接 .記平面 與平面 的交線為 ,二面角 大小為 .

(1)證明:
(2)證明:
(3)求平面 與平面 所成銳二面角大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案