【題目】已知函數(shù)f(x)=2x
(1)若f(x)=2,求x的值;
(2)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.

【答案】
(1)解:當x≤0時f(x)=0,

當x>0時, ,

有條件可得,

即22x﹣2×2x﹣1=0,解得 ,∵2x>0,∴ ,∴


(2)解:當t∈[1,2]時, ,

即m(22t﹣1)≥﹣(24t﹣1).∵22t﹣1>0,∴m≥﹣(22t+1).

∵t∈[1,2],∴﹣(1+22t)∈[﹣17,﹣5],

故m的取值范圍是[﹣5,+∞).


【解析】(1)當x≤0時得到f(x)=0而f(x)=2,所以無解;當x>0時解出f(x)=2求出x即可;(2)由 t∈[1,2]時,2tf(2t)+mf(t)≥0恒成立得到,得到f(t)= ,代入得到m的范圍即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知底角為45°的等腰梯形ABCD,底邊BC長為12,腰長為4 ,當一條垂直于底邊BC(垂足為F)的直線l從左至右移動(與梯形ABCD有公共點)時,直線l把梯形分成兩部分.

(1)令BF=x(0<x<12),試寫出直線右邊部分的面積y與x的函數(shù)解析式;
(2)在(1)的條件下,令y=f(x).構造函數(shù)g(x)=
①判斷函數(shù)g(x)在(4,8)上的單調性;
②判斷函數(shù)g(x)在定義域內是否具有單調性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司今年年初用25萬元引進一種新的設備,投入設備后每年收益為21萬元.該公司第n年需要付出設備的維修和工人工資等費用an的信息如圖.

(1)求an
(2)引進這種設備后,第幾年后該公司開始獲利;
(3)這種設備使用多少年,該公司的年平均獲利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓 和圓 .

1)若直線過點,且被圓截得的弦長為,求直線的方程;

2)設為平面直角坐標系上的點,滿足:存在過點的無窮多對相互垂直的直線,它們分別與圓相交,且直線被圓截得的弦長與直線被圓截得的弦長相等,試求所有滿足條件的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是空間兩條直線, 是空間兩個平面,則下列命題中不正確的是( )

A. 時,“”是“”的充要條件

B. 時,“”是“”的充分不必要條件

C. 時,“”是“”的必要不充分條件

D. 時,“”是“”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差x/攝氏度

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

該農科所確定的研究方案是:先從這5組數(shù)據中選取2組,用剩下的3組數(shù)據求線性回歸方程,再用被選取的2組數(shù)據進行檢驗.

(Ⅰ)求選取的2組數(shù)據恰好是不相鄰2天的數(shù)據的概率;

(Ⅱ)若選取的是12月1日與12月5日的2組數(shù)據,請根據12月2日至4日的數(shù)據,求出關于的線性回歸方程,由線性回歸方程得到的估計數(shù)據與所選取的檢驗數(shù)據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

附:參考格式:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù) ,我們把使 的實數(shù) 叫做函數(shù) 的零點,且有如下零

點存在定理:如果函數(shù) 在區(qū)間 上的圖像是連續(xù)不斷的一條曲線,并且有 ,那么,函數(shù) 在區(qū)間 內有零點.給出下列命題:

若函數(shù) 上是單調函數(shù),則 上有且僅有一個零點;

函數(shù) 個零點;

函數(shù) 的圖像的交點有且只有一個;

設函數(shù) 都滿足 ,且函數(shù) 恰有 個不同的零點,則這6個零點的和為18;

其中所有正確命題的序號為________(把所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若曲線 處的切線互相平行,求 的值;

(2) 的單調區(qū)間;

(3) ,若對任意 ,均存在 ,使得 ,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= x3﹣x2+x.
(1)求函數(shù)f(x)在[﹣1,2]上的最大值和最小值;
(2)若函數(shù)g(x)=f(x)﹣4x,x∈[﹣3,2],求g(x)的單調區(qū)間.

查看答案和解析>>

同步練習冊答案