在等差數(shù)列中,,前項(xiàng)和滿足條件,
(1)求數(shù)列的通項(xiàng)公式和;(2)記,求數(shù)列的前項(xiàng)和.

(1),(2).

解析試題分析:(1)求等差數(shù)列問題,一般利用待定系數(shù)法求解. 設(shè)等差數(shù)列的公差為,由得:,所以,且,所以(2)由,得這是等差乘等比型,因此利用錯(cuò)位相減法求和. ,
兩式相減得:,所以 .
解:(1)設(shè)等差數(shù)列的公差為,由
得:,所以,且,          3分
所以                       5分
                                     7分
(2)由,得                         8分
所以,      ①         9分
,    ②       11分
① ②得
                      13分

                                        15分
所以                                           16分
考點(diǎn):等差數(shù)列,錯(cuò)位相減法求和

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和,為等比數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知為公差不為零的等差數(shù)列,首項(xiàng),的部分項(xiàng)、、…、恰為等比數(shù)列,且,
(1)求數(shù)列的通項(xiàng)公式(用表示);
(2)若數(shù)列的前項(xiàng)和為,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(2013•重慶)設(shè)數(shù)列{an}滿足:a1=1,an+1=3an,n∈N+
(1)求{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)已知{bn}是等差數(shù)列,Tn為前n項(xiàng)和,且b1=a2,b3=a1+a2+a3,求T20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是一個(gè)等差數(shù)列且,,
(1)求通項(xiàng)公式;
(2)求的前項(xiàng)和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù), 數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)令,若對一切成立,求最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和為,
已知,,,是數(shù)列的前項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;(2)求;
(3)求滿足的最大正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{}的前n項(xiàng)和 (n為正整數(shù))。
(1)令,求證數(shù)列{}是等差數(shù)列,并求數(shù)列{}的通項(xiàng)公式;
(2)令,,求并證明:<3.

查看答案和解析>>

同步練習(xí)冊答案