【題目】已知函數(shù),曲線在點,(1)處的切線方程為.
(1)求函數(shù)的解析式,并證明:.
(2)已知,且函數(shù)與函數(shù)的圖象交于,,,兩點,且線段的中點為,,證明:(1).
【答案】(1);證明見解析;(2)證明見解析;
【解析】
(1)根據(jù)題意,對求導(dǎo)得,利用導(dǎo)數(shù)的幾何意義和切線方程求出和,即可求出的解析式,令,利用導(dǎo)數(shù)研究函數(shù)得單調(diào)性和最值得出,即可證明不等式;
(2)結(jié)合分析法,把所要證明的問題轉(zhuǎn)化為證明,設(shè),進而轉(zhuǎn)化為只需證:,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而可證明出(1).
解:(1)由題可知,,則,
由于在點,(1)處的切線方程為,
所以(1),即,
即(1),則,解得:,
則.
令,,
令,即,解得:,
則時,,單調(diào)遞減;時,,單調(diào)遞增,
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,
,則.
(2)由題可知,,且,
則,,
要證(1)成立,
只需證:,
即證:,即證:,
只需證:,
不妨設(shè),即證:,
要證,只需證:,
令,則,
在上為增函數(shù),
,即成立;
要證,只需證:,
令,則,
在上為減函數(shù),
,即成立.
,成立,
(1)成立.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點離心率.
(Ⅰ)求橢圓的方程;
(Ⅱ)經(jīng)過橢圓左焦點的直線(不經(jīng)過點且不與軸重合)與橢圓交于兩點,與直線:交于點,記直線的斜率分別為.則是否存在常數(shù),使得向量 共線?若存在求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了增強學生的冬奧會知識,弘揚奧林匹克精神,北京市多所中小學校開展了模擬冬奧會各項比賽的活動.為了了解學生在越野滑輪和旱地冰壺兩項中的參與情況,在北京市中小學學校中隨機抽取了10所學校,10所學校的參與人數(shù)如下:
(Ⅰ)現(xiàn)從這10所學校中隨機選取2所學校進行調(diào)查.求選出的2所學校參與越野滑輪人數(shù)都超過40人的概率;
(Ⅱ)現(xiàn)有一名旱地冰壺教練在這10所學校中隨機選取2所學校進行指導(dǎo),記X為教練選中參加旱地冰壺人數(shù)在30人以上的學校個數(shù),求X的分布列和數(shù)學期望;
(Ⅲ)某校聘請了一名越野滑輪教練,對高山滑降、轉(zhuǎn)彎、八字登坡滑行這3個動作進行技術(shù)指導(dǎo).規(guī)定:這3個動作中至少有2個動作達到“優(yōu)”,總考核記為“優(yōu)”.在指導(dǎo)前,該校甲同學3個動作中每個動作達到“優(yōu)”的概率為0.1.在指導(dǎo)后的考核中,甲同學總考核成績?yōu)?/span>“優(yōu)”.能否認為甲同學在指導(dǎo)后總考核達到“優(yōu)”的概率發(fā)生了變化?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在現(xiàn)代社會中,信號處理是非常關(guān)鍵的技術(shù),我們通過每天都在使用的電話或者互聯(lián)網(wǎng)就能感受到,而信號處理背后的“功臣”就是正弦型函數(shù).函數(shù)的圖象就可以近似的模擬某種信號的波形,則下列說法正確的是( )
A.函數(shù)為周期函數(shù),且最小正周期為
B.函數(shù)為奇函數(shù)
C.函數(shù)的圖象關(guān)于直線對稱
D.函數(shù)的導(dǎo)函數(shù)的最大值為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)是數(shù)列1,,,…,的各項和,,.
(1)設(shè),證明:在內(nèi)有且只有一個零點;
(2)當時,設(shè)存在一個與上述數(shù)列的首項、項數(shù)、末項都相同的等差數(shù)列,其各項和為,比較與的大小,并說明理由;
(3)給出由公式推導(dǎo)出公式的一種方法如下:在公式中兩邊求導(dǎo)得:,所以成立,請類比該方法,利用上述數(shù)列的末項的二項展開式證明:時(其中表示組合數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】極坐標系與直角坐標系有相同的長度單位,以原點為極點,以軸正半軸為極軸,曲線的極坐標方程為,曲線的參數(shù)方程為(為參數(shù),),射線,,與曲線交于(不包括極點)三點,,.
(1)求證:;
(2)當時,,兩點在曲線上,求與的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,五邊形中,四邊形為長方形,為邊長為的正三角形,將沿折起,使得點在平面上的射影恰好在上.
(Ⅰ)當時,證明:平面平面;
(Ⅱ)若,求平面與平面所成二面角的余弦值的絕對值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以直角坐標系的原點為極點,軸的正半軸為極軸,兩個坐標系取相等的長度單位.已知圓的參數(shù)方程為(為參數(shù)),直線的直角坐標方程為.
(1)求圓的普通方程和直線的極坐標方程;
(2)設(shè)圓和直線交于兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題的展開式中,僅有第7項的二項式系數(shù)最大,則展開式中的常數(shù)項為495;命題隨機變量服從正態(tài)分布,且,則.現(xiàn)給出四個命題:①,②,③,④,其中真命題的是( )
A.①③B.①④C.②③D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com