【題目】已知點(diǎn)列為函數(shù)圖像上的點(diǎn),點(diǎn)列順次為軸上的點(diǎn),其中,對(duì)任意,點(diǎn)構(gòu)成以為頂點(diǎn)的等腰三角形.
(1)證明:數(shù)列是等比數(shù)列;
(2)若數(shù)列中任意連續(xù)三項(xiàng)能構(gòu)成三角形的三邊,求的取值范圍;
(3)求證:對(duì)任意,是常數(shù),并求數(shù)列的通項(xiàng)公式.
【答案】(1)證明見解析; (2); (3)證明見解析;
【解析】
(1)因?yàn)?/span>,所以,得到為等比數(shù)列;
(2)要使數(shù)列中任意連續(xù)三項(xiàng)能構(gòu)成三角形的三邊,根據(jù)三角形三邊關(guān)系得到不等式,解得.
(3)因?yàn)?/span>為常數(shù),所以,,,及,,,都是公差為2的等差數(shù)列,分別求出通項(xiàng)公式即可;
解:(1),,是以為首項(xiàng),為公比的等比數(shù)列
(2)由(1)知,要使數(shù)列中任意連續(xù)三項(xiàng)能構(gòu)成三角形的三邊,
即,,
所以需滿足即解得
即
(3)依題意,,,,,
,,,,為常數(shù)
,,,,及,,,都是公差為2的等差數(shù)列,
,,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),C、D兩點(diǎn)的坐標(biāo)為,曲線上的動(dòng)點(diǎn)P滿足.又曲線上的點(diǎn)A、B滿足.
(1)求曲線的方程;
(2)若點(diǎn)A在第一象限,且,求點(diǎn)A的坐標(biāo);
(3)求證:原點(diǎn)到直線AB的距離為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某市三地A,B,C有直道互通.現(xiàn)甲交警沿路線AB乙交警沿路線ACB同時(shí)從A地出發(fā),勻速前往B地進(jìn)行巡邏,并在B地會(huì)合后再去執(zhí)行其他任務(wù).已知AB=10km,AC=6km,BC=8km,甲的巡邏速度為5km/h,乙的巡邏速度為10km/h.
(1)求乙到達(dá)C地這一時(shí)刻的甲乙兩交警之間的距離;
(2)已知交警的對(duì)講機(jī)的有效通話距離不大于3km,從乙到達(dá)C地這一時(shí)刻算起,求經(jīng)過多長(zhǎng)時(shí)間,甲乙方可通過對(duì)講機(jī)取得聯(lián)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
從數(shù)列中取出部分項(xiàng),并將它們按原來的順序組成一個(gè)數(shù)列,稱之為數(shù)列的一個(gè)子數(shù)列.
設(shè)數(shù)列是一個(gè)首項(xiàng)為、公差為的無窮等差數(shù)列.
(1)若,,成等比數(shù)列,求其公比.
(2)若,從數(shù)列中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問該數(shù)列是否為的無窮等比子數(shù)列,請(qǐng)說明理由.
(3)若,從數(shù)列中取出第1項(xiàng)、第項(xiàng)(設(shè))作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問當(dāng)且僅當(dāng)為何值時(shí),該數(shù)列為的無窮等比子數(shù)列,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,、為橢圓的左、右焦點(diǎn),為橢圓上一點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線,過點(diǎn)的直線交橢圓于、兩點(diǎn),線段的垂直平分線分別交直線、直線于、兩點(diǎn),當(dāng)最小時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,直線的極坐標(biāo)方程為,直線交圓于兩點(diǎn),為中點(diǎn).
(1)求點(diǎn)軌跡的極坐標(biāo)方程;
(2)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,其中,為正實(shí)數(shù).
(1)若的圖象總在函數(shù)的圖象的下方,求實(shí)數(shù)的取值范圍;
(2)設(shè),證明:對(duì)任意,都有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7n mile以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55n mile處有一個(gè)雷達(dá)觀測(cè)站A,某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)A北偏東45°且與點(diǎn)A相距40n mile的位置B,經(jīng)過40分鐘又測(cè)得該船已行駛到點(diǎn)A北偏東(其中,)且與點(diǎn)A相距10n mile的位置C.
(I)求該船的行駛速度(單位:n mile /h);
(II)若該船不改變航行方向繼續(xù)行駛.判斷它是否會(huì)進(jìn)入警戒水域,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為,(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)在平面直角坐標(biāo)系xOy中,A(﹣2,0),B(0,﹣2),M是曲線C上任意一點(diǎn),求△ABM面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com