【題目】已知圓M的方程為x2+(y﹣2)2=1,直線l的方程為x﹣2y=0,點(diǎn)P在直線l上,過P點(diǎn)作圓M的切線PA,PB,切點(diǎn)為A,B.
(1)若∠APB=60°,試求點(diǎn)P的坐標(biāo);
(2)若P點(diǎn)的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點(diǎn),當(dāng) 時(shí),求直線CD的方程;
(3)求證:經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn),并求出所有定點(diǎn)的坐標(biāo).

【答案】
(1)解:設(shè)P(2m,m),由題可知MP=2,所以(2m)2+(m﹣2)2=4,

解之得: ,

故所求點(diǎn)P的坐標(biāo)為P(0,0)或


(2)解:設(shè)直線CD的方程為:y﹣1=k(x﹣2),易知k存在,

由題知圓心M到直線CD的距離為 ,所以 ,

解得,k=﹣1或 ,故所求直線CD的方程為:x+y﹣3=0或x+7y﹣9=0


(3)證明:設(shè)P(2m,m),MP的中點(diǎn) ,

因?yàn)镻A是圓M的切線,所以經(jīng)過A,P,M三點(diǎn)的圓是以Q為圓心,以MQ為半徑的圓,

故其方程為:

化簡得:x2+y2﹣2y﹣m(2x+y﹣2)=0,此式是關(guān)于m的恒等式,

故x2+y2﹣2y=0且(2x+y﹣2)=0,

解得

所以經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn)(0,2)或( ,


【解析】(1)設(shè)P(2m,m),代入圓方程,解得m,進(jìn)而可知點(diǎn)P的坐標(biāo).(2)設(shè)直線CD的方程為:y﹣1=k(x﹣2),由圓心M到直線CD的距離求得k,則直線方程可得.(3)設(shè)P(2m,m),MP的中點(diǎn) ,因?yàn)镻A是圓M的切線,進(jìn)而可知經(jīng)過A,P,M三點(diǎn)的圓是以Q為圓心,以MQ為半徑的圓,進(jìn)而得到該圓的方程,根據(jù)其方程是關(guān)于m的恒等式,進(jìn)而可求得x和y,得到經(jīng)過A,P,M三點(diǎn)的圓必過定點(diǎn)的坐標(biāo).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)= 的定義域是( )
A.{x|x≥4}
B.{x|x<4}
C.{x|x≤4,且x≠1}
D.{x|x<4,且x≠﹣1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|0≤x≤2},B={y|1≤y≤2},若對于函數(shù)y=f(x),其定義域?yàn)锳,值域?yàn)锽,則這個(gè)函數(shù)的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC= AD=1,CD=

(1)求證:平面PQB⊥平面PAD;
(2)若二面角M﹣QB﹣C為30°,求線段PM與線段MC的比值t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四面體S﹣ABC中,若P為棱SC的中點(diǎn),那么異面直線PB與SA所成的角的余弦值等于( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】x∈R,則f(x)與g(x)表示同一函數(shù)的是( )
A.f(x)=x2 ,
B.f(x)=1,g(x)=(x﹣1)0
C. ,
D. ,g(x)=x﹣3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)F為拋物線E:y2=2px(p>0)的焦點(diǎn),點(diǎn)A(3,m)在拋物線E上,且|AF|=4.

(1)求拋物線E的方程;
(2)已知點(diǎn)G(﹣1,0),延長AF交拋物線E于點(diǎn)B,證明:以點(diǎn)F為圓心且與直線GA相切的圓,必與直線GB相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,其中a>0.
(Ⅰ)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求f(x)在區(qū)間[1,e]上的最小值.(其中e是自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)在其定義域上既是奇函數(shù)又是減函數(shù)的是(
A.f(x)=2x
B.f(x)=xsinx
C.
D.f(x)=﹣x|x|

查看答案和解析>>

同步練習(xí)冊答案