【題目】已知橢圓的左右焦點分別為,離心率為,點在橢圓上,且的周長為

1)求橢圓的方程;

2)已知過點的直線與橢圓交于兩點,點在直線上,求的最小值.

【答案】1;(2.

【解析】

1)根據(jù)題意,得到,求出,得到,進而可求出橢圓方程;

2)當斜率為時,得到,易求出結(jié)果;當直線不斜率為時,設(shè),設(shè)直線方程為,聯(lián)立直線與橢圓方程,根據(jù)韋達定理,以及弦長公式等,得到,再令,將原式化為,根據(jù)二次函數(shù)性質(zhì),即可求出結(jié)果.

1)由題意可得:

解得:,所以

故橢圓方程為:;

2)①當直線斜率為時,

②當直線不斜率為時:設(shè),設(shè)直線方程為

聯(lián)立方程,得,,

,,所以

,則,

又令,則,記為,

其對稱軸,開口向上,

所以函數(shù)上單調(diào)遞減,

所以

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù).

(1)的兩個不同零點,是否存在實數(shù),使成立?若存在,的值;若不存在,請說明理由.

(2)設(shè),函數(shù),存在個零點.

(i)的取值范圍;

(ii)設(shè)分別是這個零點中的最小值與最大值,的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;

(Ⅲ)設(shè),對任意恒有,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為為橢圓上一動點(異于左右頂點),面積的最大值為

(1)求橢圓的方程;

(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系下,方程的圖形為如圖所示的“幸運四葉草”,又稱為玫瑰線.

(1)當玫瑰線的時,求以極點為圓心的單位圓與玫瑰線的交點的極坐標;

(2)求曲線上的點M與玫瑰線上的點N距離的最小值及取得最小值時的點MN的極坐標(不必寫詳細解題過程).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某項娛樂活動的海選過程中評分人員需對同批次的選手進行考核并評分,并將其得分作為該選手的成績,成績大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過40分的選手將直接被淘汰,成績在內(nèi)的選手可以參加復活賽,如果通過,也可以參加第二輪比賽.

(1)已知成績合格的200名參賽選手成績的頻率分布直方圖如圖,求a的值及估計這200名參賽選手的成績平均數(shù);

(2)根據(jù)已有的經(jīng)驗,參加復活賽的選手能夠進入第二輪比賽的概率為,假設(shè)每名選手能否通過復活賽相互獨立,現(xiàn)有3名選手進入復活賽,記這3名選手在復活賽中通過的人數(shù)為隨機變量X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱中,,,分別為、的中點.

(1)證明:平面;

(2)已知與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓的右焦點為,過的直線交于兩點,點的坐標為.

(1)當軸垂直時,求直線的方程;

(2)設(shè)為坐標原點,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓的長軸長為,點、、為橢圓上的三個點,為橢圓的右端點,過中心,且,

1)求橢圓的標準方程;

2)設(shè)是橢圓上位于直線同側(cè)的兩個動點(異于、),且滿足,試討論直線與直線斜率之間的關(guān)系,并求證直線的斜率為定值.

查看答案和解析>>

同步練習冊答案