9、設(shè)偶函數(shù)f(x)=loga|x-b|在(-∞,0)為增函數(shù),則f(a+1)與f(b+2)的大小關(guān)系是
f(a+1)>f(b+2)
分析:利用函數(shù)為偶函數(shù)得到b=0,利用函數(shù)的單調(diào)性判斷出a的范圍,判斷出f(x)在對(duì)稱區(qū)間上的單調(diào)性,判斷出函數(shù)值的大。
解答:解:∵f(x)為偶函數(shù)
∴b=0
∵f(x)在(-∞,0)為增函數(shù)
∴0<a<1
∴f(x)在(0,+∞)遞減
∴0<a+1<b+2
∴f(a+1)>f(b+2)
故答案為f(a+1)>f(b+2)
點(diǎn)評(píng):本題考查通過(guò)函數(shù)的性質(zhì)判斷出參數(shù)的取值、考查利用函數(shù)的單調(diào)性比較函數(shù)值的大小.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)偶函數(shù)f(x)=Asin(ωx+?)(A>0,ω>0,0<?<π)的部分圖象如圖所示,△KLM為等腰直角三角形(其中K,L為圖象與x軸的交點(diǎn),M為極小值點(diǎn)),∠KML=90°,KL=
1
2
,則f(
1
6
)
的值為
1
8
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南師大附中高三(上)11月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)偶函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的部分圖象如圖所示,△KLM為等腰直角三角形(其中K,L為圖象與x軸的交點(diǎn),M為極小值點(diǎn)),∠KML=90°,KL=,則的值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省湖州中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)偶函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的部分圖象如圖所示,△KLM為等腰直角三角形(其中K,L為圖象與x軸的交點(diǎn),M為極小值點(diǎn)),∠KML=90°,KL=,則的值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南師大附中高三(上)11月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)偶函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的部分圖象如圖所示,△KLM為等腰直角三角形(其中K,L為圖象與x軸的交點(diǎn),M為極小值點(diǎn)),∠KML=90°,KL=,則的值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省湖州中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

設(shè)偶函數(shù)f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的部分圖象如圖所示,△KLM為等腰直角三角形(其中K,L為圖象與x軸的交點(diǎn),M為極小值點(diǎn)),∠KML=90°,KL=,則的值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案