【題目】如圖,AB為橢圓的左、右頂點(diǎn),直線過(guò)橢圓C的右焦點(diǎn)F且交橢圓于PQ兩點(diǎn).連結(jié)并延長(zhǎng)交直線于點(diǎn)M.

1)若直線的斜率為,求直線的方程;

2)求證:A,Q,M三點(diǎn)共線.

【答案】1;(2)證明見(jiàn)解析.

【解析】

1)設(shè),計(jì)算出的值,最后求出直線的斜率,最后求出直線的方程;

2)根據(jù)直線的斜率為零不為零進(jìn)行分類討論. 直線的斜率為零時(shí),顯然成立;直線的斜率不為零時(shí),設(shè)出直線的方程與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系,只要計(jì)算出就可以證明出A,Q,M三點(diǎn)共線.

1)設(shè),所以,由題意可知:,

.

,∴直線的方程為:

2)當(dāng)垂直于y軸時(shí),方程為,此時(shí)顯然有A,QM三點(diǎn)共線;

當(dāng)不垂直于y軸時(shí),設(shè)方程為,,

則直線方程為,令得,,即.

AQ,M三點(diǎn)共線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性.

(2)試問(wèn)是否存在,使得對(duì)恒成立?若存在,求的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)半圓中有兩個(gè)互切的內(nèi)切半圓,由三個(gè)半圓弧圍成曲邊三角形,作兩個(gè)內(nèi)切半圓的公切線把曲邊三角形分隔成兩塊,阿基米德發(fā)現(xiàn)被分隔的這兩塊的內(nèi)切圓是同樣大小的,由于其形狀很像皮匠用來(lái)切割皮料的刀子,他稱此為“皮匠刀定理”,如圖,若,則陰影部分與最大半圓的面積比為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)的圖象有且僅有一個(gè)交點(diǎn),的值(其中表示不超過(guò)的最大整數(shù),.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的值域?yàn)?/span>.

1)判斷此函數(shù)的奇偶性,并說(shuō)明理由;

2)判斷此函數(shù)在的單調(diào)性,并用單調(diào)性的定義證明你的結(jié)論;

3)求出上的最小值,并求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線),直線,交于P、Q兩點(diǎn),P關(guān)于y軸的對(duì)稱點(diǎn),直線y軸交于點(diǎn)

1)若點(diǎn)的一個(gè)焦點(diǎn),求的漸近線方程;

2)若,點(diǎn)P的坐標(biāo)為,且,求k的值;

3)若,求n關(guān)于b的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,底面,為線段的中點(diǎn),為線段上的動(dòng)點(diǎn).

1)求證:平面平面

2)試確定點(diǎn)的位置,使平面與平面所成的銳二面角為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:雙曲線:的左、右焦點(diǎn)分別為,,過(guò)作直線軸于點(diǎn).

(1)當(dāng)直線平行于的一條漸近線時(shí),求點(diǎn)到直線的距離;

(2)當(dāng)直線的斜率為時(shí),在右支上是否存在點(diǎn),滿足?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由;

(3)若直線交于不同兩點(diǎn)、,且上存在一點(diǎn),滿足(其中為坐標(biāo)原點(diǎn)),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)a0.

1)求fx)的單調(diào)增區(qū)間;

2)當(dāng)x[0,π]時(shí),fx)值域?yàn)?/span>[3,4],求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案