【題目】給出下列三種說法:
①命題p:x0∈R,tan x0=1,命題q:x∈R,x2-x+1>0,則命題“p∧()”是假命題.
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是=-3.
③命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”.
其中所有正確說法的序號為________________.
【答案】①③
【解析】
試題分析:①若命題p:存在x∈R,使得tanx=1;命題q:對任意x∈R,x2-x+1>0,則命題“p且q”為假命題,此結(jié)論正確,對兩個命題進行研究發(fā)現(xiàn)兩個命題都是真命題,故可得“p且q”為假命題.
②已知直線l1:ax+3y-1=0,l2:x+by+1=0.則l1⊥l2的充要條件為=3,若兩直線垂直時,兩直線斜率存在時,斜率乘積為=3,當a=0,b=0時,此時兩直線垂直,但不滿足=3,故本命題不對.
③命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1則x2-3x+2≠0”,由四種命題的書寫規(guī)則知,此命題正確;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的焦距為2 ,其上下頂點分別為C1 , C2 , 點A(1,0),B(3,2),AC1⊥AC2 .
(1)求橢圓E的方程及離心率;
(2)點P的坐標為(m,n)(m≠3),過點A任意作直線l與橢圓E相交于點M,N兩點,設(shè)直線MB,BP,NB的斜率依次成等差數(shù)列,探究m,n之間是否滿足某種數(shù)量關(guān)系,若是,請給出m,n的關(guān)系式,并證明;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列{an}的前n項和為Sn,且an和Sn滿足:4Sn=(an+1)2 (n=1,2,3……),
(1)求{an}的通項公式;(2)設(shè)bn= ,求{bn}的前n項和Tn;
(3)在(2)的條件下,對任意n∈N*,Tn都成立,求整數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖5,在四棱錐P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.
(Ⅰ)證明:CD⊥平面PAE;
(Ⅱ)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y2=2px(p>0)的焦點為F,拋物線上存在一點G到焦點的距離為3,且點G在圓C:x2+y2=9上. (Ⅰ)求拋物線C1的方程;
(Ⅱ)已知橢圓C2: =1(m>n>0)的一個焦點與拋物線C1的焦點重合,且離心率為 .直線l:y=kx﹣4交橢圓C2于A、B兩個不同的點,若原點O在以線段AB為直徑的圓的外部,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的方程為,P在橢圓上,橢圓的左頂點為A,左、右焦點分別為,的面積是的面積的倍.
(1)求橢圓C的方程;(2)直線與橢圓C交于M,N,連接并延長交橢圓C于D,E,連接DE,指出與之間的關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數(shù)列,的通項公式;
(2)設(shè)數(shù)列滿足,數(shù)列的前n項和為,若不等式
對一切n∈N*恒成立,求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年1月31日晚上月全食的過程分為初虧、食既、食甚、生光、復(fù)圓五個階段,月食的初虧發(fā)生在19時48分,20時51分食既,食甚時刻為21時31分,22時08分生光,直至23時12分復(fù)圓.全食伴隨有藍月亮和紅月亮,全食階段的“紅月亮”將在食甚時刻開始,生光時刻結(jié)束,一市民準備在19:55至21:56之間的某個時刻欣賞月全食,則他等待“紅月亮”的時間超過30分鐘的概率是__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=|2x﹣ |+|2x+m|(m≠0).
(1)證明:f(x)≥2 ;
(2)若當m=2時,關(guān)于實數(shù)x的不等式f(x)≥t2﹣ t恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com