【題目】如圖所示,棱長為a的正方體,N是棱的中點;

1)求直線AN與平面所成角的大。

2)求到平面ANC的距離.

【答案】1;(2a;

【解析】

1)以為原點,建立空間直角坐標(biāo)系,求出平面的一個法向量,利用向量的夾角公式,得到與法向量的夾角,從而得到答案;(2)求出平面的一個法向量,到平面的距離等于在此法向量方向上投影的絕對值,從而得到答案.

1)以為坐標(biāo)原點,軸,軸,軸,

建立空間直角坐標(biāo)系,如圖所示,

,,,,

因為平面平面

所以,

因為正方形,所以

平面,,

所以平面

為平面的一個法向量,

設(shè)直線與平面所成的角為,

,

所以直線與平面所成的角為.

2)設(shè)平面的一個法向量,

,所以,

,

因為,

所以到平面的距離.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 是邊長為的正方形平面平面, , , , .

1求證:面

2求直線與平面所成角的正弦值;

3)在線段上是否存在點,使得二面角的大小為?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),,其中m是不等于零的常數(shù),

(1)時,直接寫出的值域;

(2)求的單調(diào)遞增區(qū)間;

(3)已知函數(shù)(),定義:(),().其中,表示函數(shù)D上的最小值,表示函數(shù)D上的最大值.例如:,,則,,,.當(dāng)時,設(shè),不等式恒成立,求t,n的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,取同離心率的兩個橢圓成軸對稱內(nèi)外嵌套得一個標(biāo)志,為美觀考慮,要求圖中標(biāo)記的①、②、③)三個區(qū)域面積彼此相等.(已知:橢圓面積為圓周率與長半軸、短半軸長度之積,即橢圓面積為

(1)求橢圓的離心率的值;

2)已知外橢圓長軸長為6,用直角角尺兩條直角邊內(nèi)邊緣與外橢圓相切,移動角尺繞外橢圓一周,得到由點M生成的軌跡將兩橢圓圍起來,整個標(biāo)志完成.請你建立合適的坐標(biāo)系,求出點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若兩個函數(shù)的圖象經(jīng)過若干次平移后能夠重合,則稱這兩個函數(shù)為“同形”函數(shù),給出下列四個函數(shù):,,,則“同形”函數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,斜三棱柱中,平面平面,為棱的中點,.若,60°

(Ⅰ)證明:直線平面;

(Ⅱ)證明:平面平面

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心為,一個方向向量為的直線只有一個公共點

1)若且點在第二象限,求點的坐標(biāo);

2)若經(jīng)過的直線垂直,求證:點到直線的距離;

3)若點、在橢圓上,記直線的斜率為,且為直線的一個法向量,且的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的周期為,圖象的一個對稱中心為.將函數(shù)圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再將所得到的圖象向右平移個單位長度后得到函數(shù)的圖象.

(1)求函數(shù)的解析式.

(2)定義:當(dāng)函數(shù)取得最值時,函數(shù)圖象上對應(yīng)的點稱為函數(shù)的最值點,如果函數(shù)的圖象上至少有一個最大值點和一個最小值點在圓的內(nèi)部或圓周上,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,側(cè)面⊥底面,底面為直角梯形,//,,,的中點.

(Ⅰ)求證:PA//平面BEF;

(Ⅱ)若PCAB所成角為,求的長;

(Ⅲ)在(Ⅱ)的條件下,求二面角F-BE-A的余弦值

查看答案和解析>>

同步練習(xí)冊答案