【題目】(本小題滿(mǎn)分14分)如圖,四棱錐的底面ABCD 是平行四邊形,平面PBD平面 ABCD, PB=PD, , , 分別是, 的中點(diǎn),連結(jié).求證:

1平面;

2平面

【答案】(1)詳見(jiàn)解析(2)詳見(jiàn)解析

【解析】試題分析:(1)證明線面平行,關(guān)鍵證明線線平行,這可根據(jù)三角形中位線性質(zhì)得到:在中,因?yàn)?/span>, 分別是, 的中點(diǎn),所以.再根據(jù)線面平行判定定理進(jìn)行證明(2)證明線面垂直,需多次利用線線垂直與線面垂直相互轉(zhuǎn)化:先根據(jù)面面垂直性質(zhì)定理轉(zhuǎn)化為線面垂直:由平面PBD平面ABCD,得平面.從而.又因?yàn)?/span>,所以可得平面.從而.又因?yàn)?/span>, ,所以.從而可證平面

試題解析:證明:(1)連結(jié)AC,

因?yàn)?/span>ABCD 是平行四邊形,所以O的中點(diǎn). 2

中,因?yàn)?/span>, 分別是, 的中點(diǎn),

所以4

因?yàn)?/span>平面, 平面,

所以平面6

2)連結(jié).因?yàn)?/span>的中點(diǎn),PB=PD

所以PO⊥BD

又因?yàn)槠矫?/span>PBD平面ABCD,平面

= , 平面

所以平面

從而8

又因?yàn)?/span>, , 平面, 平面

所以平面

因?yàn)?/span>平面,所以10

因?yàn)?/span>,所以12

又因?yàn)?/span>平面平面, ,

所以平面14

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)行如圖所示的程序框圖,若輸出的結(jié)果為 ,則判斷框內(nèi)可以填(

A.k>98?
B.k≥99?
C.k≥100?
D.k>101?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點(diǎn)為F,直線y=x﹣8與此拋物線交于A、B兩點(diǎn),與x軸交于點(diǎn)C,O為坐標(biāo)原點(diǎn),若 =3
(1)求此拋物線的方程;
(2)求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列{an}的前n項(xiàng)和為Sn , 滿(mǎn)足a1=1,Sn=an+1+n,則其通項(xiàng)公式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分16分)已知數(shù)列, )滿(mǎn)足, 其中

1)當(dāng)時(shí),求關(guān)于的表達(dá)式,并求的取值范圍;

2)設(shè)集合

, ,求證: ;

是否存在實(shí)數(shù), ,使, , 都屬于?若存在,請(qǐng)求出實(shí)數(shù) ;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于三角形滿(mǎn)足的條件,下列判斷正確的是(
A.a=7,b=14,A=30°,有兩解
B.a=30,b=25,A=150°,有一解
C.a=6,b=9,A=45°,有兩解
D.b=9,c=10,B=60°,無(wú)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=x2﹣ax+b.
(1)若不等式f(x)<0的解集是{x|2<x<3},求不等式bx2﹣ax+1>0的解集;
(2)當(dāng)b=3﹣a時(shí),對(duì)任意的x∈(﹣1,0]都有f(x)≥0成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x,g(x)=ax+2(a>0),若x1∈[﹣1,2],x2∈[﹣1,2],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是(
A.
B.
C.(0,3]
D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)拋物線y2=2x的焦點(diǎn)為F,過(guò)點(diǎn)M( ,0)的直線與拋物線相交于A,B兩點(diǎn),與拋物線的準(zhǔn)線相交于C,|BF|=2,則△BCF和△ACF的面積之比為

查看答案和解析>>

同步練習(xí)冊(cè)答案