精英家教網 > 高中數學 > 題目詳情
某網絡營銷部門為了統(tǒng)計某市網友2013年11月11日在某淘寶店的網購情況,隨機抽查了該市當天名網友的網購金額情況,得到如下數據統(tǒng)計表(如圖):

若網購金額超過千元的顧客定義為“網購達人”,網購金額不超過千元的顧客定義為“非網購達人”,已知“非網購達人”與“網購達人”人數比恰好為
(1)試確定,,的值,并補全頻率分布直方圖(如圖(2)).
(2)該營銷部門為了進一步了解這名網友的購物體驗,從“非網購達人”、“網購達人”中用分層抽樣的方法確定人,若需從這人中隨機選取人進行問卷調查.設為選取的人中“網購達人”的人數,求的分布列和數學期望.
(1) (2)

試題分析:
(1)已知“非網購達人”與“網購達人”人數比恰好為和總人數60,就可以建立關于各組頻數的兩個式子,解方程即可得到x,y的值.有了各組的頻數,再利用頻數除以總數就可以得到頻率,頻率除以組距就可以得到頻率分布直方圖中未知分組的縱坐標.
(2)利用抽樣過程中每個個體入樣可能性相等的條件可以求出“非網購達人”、“網購
達人”各抽取6人和4人.十人中選取三人,則的值有1,2,3.三種情況可以利用無序的組合數和古典概型的概率計算公式求得各種情況的概率,進而建立分布列,得到期望.
試題解析:
(1)根據題意,有
解得                            2分
,
補全頻率分布直方圖如圖所示.                     4分

(2)用分層抽樣的方法,從中選取人,則
其中“網購達人”有人,“非網購達人”有人.         6分
的可能取值為0,1,2,3;
 ,
,.       10分
所以的分布列為:










.                12分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

盒子中裝有四張大小形狀均相同的卡片,卡片上分別標有數其中是虛數單位.稱“從盒中隨機抽取一張,記下卡片上的數后并放回”為一次試驗(設每次試驗的結果互不影響).
(1)求事件 “在一次試驗中,得到的數為虛數”的概率與事件 “在四次試驗中,
至少有兩次得到虛數” 的概率;
(2)在兩次試驗中,記兩次得到的數分別為,求隨機變量的分布列與數學期望

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

為了了解某班的男女生學習體育的情況,按照分層抽樣分別抽取了10名男生和5名女生作為樣本,他們期末體育成績的莖葉圖如圖所示,其中莖為十位數,葉為個位數。

(Ⅰ)若該班男女生平均分數相等,求x的值;
(Ⅱ)若規(guī)定85分以上為優(yōu)秀,在該10名男生中隨機抽取2名,優(yōu)秀的人數記為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

對有n(n≥4)個元素的總體{1,2,3,…,n}進行抽樣,先將總體分成兩個子總體{1,2,3,…,m}和{m+1,m+2,…,n}(m是給定的正整數,且2≤m≤n-2),再從每個子總體中各隨機抽出2個元素組成樣本,用pij表示元素i和j同時出現(xiàn)在樣本中的概率.
(Ⅰ)若n=8,m=4,求P18;
(Ⅱ)求p1n;
(Ⅲ)求所有pij(1≤i<j≤n)的和.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

為保護水資源,宣傳節(jié)約用水,某校4名志愿者準備去附近的甲、乙、丙三家公園進行宣傳活動,每名志愿者都可以從三家公園中隨機選擇一家,且每人的選擇相互獨立.
(1)求4人恰好選擇了同一家公園的概率;
(2)設選擇甲公園的志愿者的人數為X,試求X的分布列.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

隨機變量X的分布列是
X
4
7
9
10
P
0.3
a
b
0.2
E(X)=7.5,則a=________,b=________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

近幾年來,我國許多地區(qū)經常出現(xiàn)干旱現(xiàn)象,為抗旱經常要進行人工降雨.現(xiàn)由天氣預報得知,某地在未來5天的指定時間的降雨概率是:前3天均為50%,后2天均為80%,5天內任何一天的該指定時間沒有降雨,則在當天實行人工降雨,否則,當天不實施人工降雨.
(1)求至少有1天需要人工降雨的概率.
(2)求不需要人工降雨的天數x的分布列和期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

一個袋子裝有大小形狀完全相同的9個球,其中5個紅球編號分別為1,2,3,4,5,4個白球編號分別為1,2,3,4,從袋中任意取出3個球.
(1)求取出的3個球編號都不相同的概率;
(2)記X為取出的3個球中編號的最小值,求X的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題


現(xiàn)有長分別為、的鋼管各根(每根鋼管質地均勻、粗細相同且附有不同的編號),從中隨機抽取根(假設各鋼管被抽取的可能性是均等的,),再將抽取的鋼管相接焊成筆直的一根.
(1)當時,記事件{抽取的根鋼管中恰有根長度相等},求;
(2)當時,若用表示新焊成的鋼管的長度(焊接誤差不計),①求的分布列;
②令,,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案