【題目】已知函數(shù),函數(shù).

1)討論函數(shù)的極值;

2)已知函數(shù),若函數(shù)上恰有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】1)見解析;(2

【解析】

1)對(duì)求導(dǎo),分兩種情況,分別討論的正負(fù)性,可得到的單調(diào)性,進(jìn)而可求得極值;

(2)易知有且僅有一個(gè)零點(diǎn),且時(shí),從而可知有兩個(gè)零點(diǎn),結(jié)合(1)知不符合題意,時(shí),討論的極值,并結(jié)合零點(diǎn)存在性定理可求出答案.

1的定義域?yàn)?/span>,

當(dāng)時(shí),恒成立,∴單調(diào)遞減,故無極值,

當(dāng)時(shí),由.

當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增,

處取得極小值,無極大值.

綜上,當(dāng)時(shí),無極值;當(dāng)時(shí),有極小值,無極大值.

2)若的零點(diǎn),則必有,∴的零點(diǎn)必為的零點(diǎn),

有且僅有一個(gè)零點(diǎn),且,時(shí).

①當(dāng)時(shí),由(1)知單調(diào)遞減,至多只有一個(gè)零點(diǎn),此時(shí)至多只有兩個(gè)零點(diǎn),不合題意,舍去;

②當(dāng)時(shí),由(1)知單調(diào)遞減,在單調(diào)遞增,則.

i)當(dāng)時(shí),至多只有一個(gè)零點(diǎn),此時(shí)至多只有兩個(gè)零點(diǎn),不合題意,舍去;

ii)當(dāng)時(shí),,

由零點(diǎn)存在性定理知使得.

,則單調(diào)遞增,在單調(diào)遞減,

,∴,

當(dāng)時(shí),,

,又,

∴由零點(diǎn)存在性定理知使得,

;;,,

∴當(dāng)時(shí),有三個(gè)零點(diǎn),滿足題意.

綜上,實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,求的最大值;

(2)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若處的切線方程為,求的值;

(2)若為區(qū)間上的任意實(shí)數(shù),且對(duì)任意,總有成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種子公司對(duì)一種新品種的種子的發(fā)芽多少與晝夜溫差之間的關(guān)系進(jìn)行分析研究,以便選擇最合適的種植條件.他們分別記錄了10塊試驗(yàn)地每天的晝夜溫差和每塊實(shí)驗(yàn)地里50顆種子的發(fā)芽數(shù),得到如下資料:

(1)從上述十組試驗(yàn)數(shù)據(jù)來看,是否可以判斷晝夜溫差與發(fā)芽數(shù)之間具有相關(guān)關(guān)系?是否具有線性相關(guān)關(guān)系?

(2)若在一定溫度范圍內(nèi),晝夜溫差與發(fā)芽數(shù)近似滿足相關(guān)關(guān)系:(其中).取后五組數(shù)據(jù),利用最小二乘法求出線性回歸方程(精確到0.01);

(3)利用(2)的結(jié)論,若發(fā)芽數(shù)試驗(yàn)值與預(yù)測(cè)值差的絕對(duì)值不超過3個(gè)就認(rèn)為正常,否則認(rèn)為不正常.從上述十組試驗(yàn)中任取三組,至少有兩組正常的概率是多少?

:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的“十八大”之后,做好農(nóng)業(yè)農(nóng)村工作具有特殊重要的意義.國(guó)家為了更 好地服務(wù)于農(nóng)民、開展社會(huì)主義新農(nóng)村工作,派調(diào)查組到農(nóng)村某地區(qū)考察.該地區(qū)有100戶農(nóng) 民,且都從事蔬菜種植.據(jù)了解,平均每戶的年收入為6萬元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),當(dāng)?shù)卣疀Q 定動(dòng)員部分農(nóng)民從事蔬菜加工.據(jù)統(tǒng)計(jì),若動(dòng)員戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù) 從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高,而從事蔬菜加工的農(nóng)民平均每戶的年收入為萬元.

(1)在動(dòng)員戶農(nóng)民從事蔬菜加工后,要使剩下戶從事蔬菜種植的所有農(nóng)民總年收 入不低于動(dòng)員前100戶從事蔬菜種植的所有農(nóng)民年總年收入,求的取值范圍;

(2)在(1)的條件下,要使這戶農(nóng)民從事蔬菜加工的總年收入始終不高于戶從事蔬菜種植的所有農(nóng)民年總年收入,求的最大值.(參考數(shù)據(jù):)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如果存在常數(shù),使得數(shù)列滿足:若是數(shù)列中的一項(xiàng),則也是數(shù)列 中的一項(xiàng),稱數(shù)列為“兌換數(shù)列”,常數(shù)是它的“兌換系數(shù)”.

1)若數(shù)列:是“兌換系數(shù)”為的“兌換數(shù)列”,求的值;

2)已知有窮等差數(shù)列的項(xiàng)數(shù)是,所有項(xiàng)之和是,求證:數(shù)列“兌換數(shù)列”,并用表示它的“兌換系數(shù)”;

3)對(duì)于一個(gè)不小于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列,是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某城市有一塊半徑為(單位:百米)的圓形景觀,圓心為,有兩條與圓形景觀相切且互相垂直的道路.最初規(guī)劃在拐角處圖中陰影部分只有一塊綠化地,后來有眾多市民建議在綠化地上建一條小路,便于市民快捷地往返兩條道路.規(guī)劃部門采納了此建議,決定在綠化地中增建一條與圓相切的小道問:兩點(diǎn)應(yīng)選在何處可使得小道最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐SABCD的底面ABCD是正方形,SA⊥底面ABCD,ESC上的一點(diǎn).

(1)求證:平面EBD⊥平面SAC;

(2)設(shè)SA4,AB2,求點(diǎn)A到平面SBD的距離;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:過點(diǎn),且離心率為

(Ⅰ)求橢圓C的方程;

(Ⅱ)若過原點(diǎn)的直線與橢圓C交于P、Q兩點(diǎn),且在直線上存在點(diǎn)M,使得為等邊三角形,求直線的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案