【題目】已知橢圓C: (a>b>0)的離心率為 ,直線l:y=x+2與以原點(diǎn)為圓心、橢圓C的短半軸為半徑的圓O相切.
(1)求橢圓C的方程;
(2)過橢圓C的左頂點(diǎn)A作直線m,與圓O相交于兩點(diǎn)R,S,若△ORS是鈍角三角形,求直線m的斜率k的取值范圍.

【答案】
(1)

解:由題意可得e= = ,

又圓O的方程為x2+y2=b2,

因?yàn)橹本l:x﹣y+2=0與圓O相切,

b= ,由a2=3c2=3(a2﹣b2),即a2=3.

所以橢圓C的方程為


(2)

解:由(1)得知圓的方程為x2+y2=2.A(﹣ ,0),直線m 的方程為:y=k(x+ ).

設(shè)R(x1,y1),S(x2,y2),由

,

由△=12k4﹣4(1+k2)(3k2﹣2)>0的﹣ <k< …①

因?yàn)椤鱋RS是鈍角三角形,∴ = =

…②

由A、R、S三點(diǎn)不共線,知k≠0. ③

由①、②、③,得直線m的斜率k的取值范圍是(﹣ ,0)∪(0,


【解析】(1)求得圓O的方程,運(yùn)用直線和相切的條件:d=r,求得b,再由離心率公式和a,b,c的關(guān)系,可得a,進(jìn)而得到橢圓方程;(2)先設(shè)出點(diǎn)R,S的坐標(biāo),利用△ORS是鈍角三角形,求得 =x1x2+y1y2<0,從而求出斜率k的取值范圍

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|﹣2|x﹣1|.
(1)作出函數(shù)f(x)的圖象;
(2)若不等式 ≤f(x)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用半徑為R的圓鐵皮剪一個(gè)內(nèi)接矩形,再以內(nèi)接矩形的兩邊分別作為圓柱的高與底面半徑,則圓柱的體積最大時(shí),該圓鐵皮面積與其內(nèi)接矩形的面積比為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用半徑為R的圓鐵皮剪一個(gè)內(nèi)接矩形,再以內(nèi)接矩形的兩邊分別作為圓柱的高與底面半徑,則圓柱的體積最大時(shí),該圓鐵皮面積與其內(nèi)接矩形的面積比為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(I)求,的值;

(II)求;

(III)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)上的單調(diào)減函數(shù),已知,且在定義域內(nèi)恒成立,則實(shí)數(shù)的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題共14分)

如圖,在四棱錐中, 平面,底面是菱形, .

()求證: 平面

)若所成角的余弦值;

)當(dāng)平面與平面垂直時(shí),求的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)fx)的最小值為1,且f0)=f2)=3

1)求fx)的解析式;

2)若fx)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;

3)在區(qū)間[1,1]上,yfx)的圖象恒在y2x+2m+1的圖象上方,試確定實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取個(gè)家庭,獲得第個(gè)家庭的月收入 (單位:千元)與月儲(chǔ)蓄 (單位:千元)的數(shù)據(jù)資料,算得,,,.

(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;

(2)判斷變量之間是正相關(guān)還是負(fù)相關(guān);

(3)若該居民區(qū)某家庭月收入為千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.其中,為樣本平均值,線性回歸方程也可寫為,附:線性回歸方程中, ,.

查看答案和解析>>

同步練習(xí)冊(cè)答案