【題目】若定義域為(﹣∞,0)∪(0,+∞),f(x)在(0,+∞)上的圖象如圖所示,則不等式f(x)f′(x)>0的解集是(

A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)

【答案】B
【解析】解:由圖可知:
f(x)在區(qū)間(0,+∞)上單調遞增,
則在區(qū)間(0,+∞)上f'(x)>0.
又由f(x)為偶函數(shù).
則f(x)在區(qū)間(﹣∞,0)上單調遞減,
則在區(qū)間(﹣∞,0)上f'(x)<0.
由f(﹣1)=f(1)=0可得
在區(qū)間(﹣∞,﹣1)上f'(x)<0,f(x)>0.
在區(qū)間(﹣1,0)上f'(x)<0,f(x)<0.
在區(qū)間(0,1)上f'(x)>0,f(x)<0.
在區(qū)間(1,+∞)上f'(x)>0,f(x)>0.
故不等式f(x)f′(x)>0的解集為(﹣1,0)∪(1,+∞)
故選B

【考點精析】關于本題考查的函數(shù)單調性的性質和函數(shù)奇偶性的性質,需要了解函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集;在公共定義域內,偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點,則在△ADE翻轉過程中,下列說法錯誤的是(
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若點P是曲線y=x2﹣lnx上任意一點,則點P到直線y=x﹣4的最小距離為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個函數(shù)中,在定義域上不是單調函數(shù)的是(
A.y=﹣2x+1
B.y=
C.y=lgx
D.y=x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0),離心率為 ,兩焦點分別為F1、F2 , 過F1的直線交橢圓C于M,N兩點,且△F2MN的周長為8.
(1)求橢圓C的方程;
(2)過點P(m,0)作圓x2+y2=1的切線l交橢圓C于A,B兩點,求弦長|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)2009年至2015年農村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:

年份

2009

2010

2011

2012

2013

2014

2015

年份代號t

1

2

3

4

5

6

7

人均純收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

附:回歸直線的斜率和截距的最小二乘估計公式分別為:
參考數(shù)據(jù):(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2017年農村居民家庭人均純收入.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2016年中國(云南賽區(qū))三對三籃球聯(lián)賽在昆明市體育局的大力支持下,圓滿順利結束.組織方統(tǒng)計了來自 , , , 球隊的男子的平均身高與本次比賽的平均得分,如下表所示:

球隊

平均身高 (單位:

170

174

176

181

179

平均得分 (單位:分)

62

64

66

70

68


(1)根據(jù)表中數(shù)據(jù),求 關于 的線性回歸方程(系數(shù)精確到 );
(2)若 隊平均身高為 ,根據(jù)(1)中所求得的回歸方程,預測 隊的平均得分.(精確到個位) 注:回歸方程 中斜率和截距最小二乘估計公式分別為
, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1=1,an= ,n=2,3,4,….
(1)求a2 , a3 , a4 , a5的值;
(2)設bn= +1,n∈N*,求證:數(shù)列{bn}是等比數(shù)列,并求出其通項公式;
(3)對任意的m≥2,m∈N*,在數(shù)列{an}中是否存在連續(xù)的2m項構成等差數(shù)列?若存在,寫出這2m項,并證明這2m項構成等差數(shù)列;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解市民在購買食物時看營養(yǎng)說明與性別的關系,現(xiàn)在社會上隨機詢問了100名市民,得到如下2×2列聯(lián)表:
(1)是否有95%的把握認為:“性別與讀營養(yǎng)說明有關系”,并說明理由;
(2)把頻率當概率,若從社會上的男性市民中隨機抽取3位,記這3位中讀營養(yǎng)說明的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望E(ξ).

男性

女性

總計

讀營養(yǎng)說明

40

20

60

不讀營養(yǎng)說明

20

20

40

總計

60

40

100

參考公式和數(shù)據(jù):

P(K2≥k0

0.10

0.050

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

同步練習冊答案