【題目】若定義域為(﹣∞,0)∪(0,+∞),f(x)在(0,+∞)上的圖象如圖所示,則不等式f(x)f′(x)>0的解集是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣1,0)∪(0,1)
【答案】B
【解析】解:由圖可知:
f(x)在區(qū)間(0,+∞)上單調遞增,
則在區(qū)間(0,+∞)上f'(x)>0.
又由f(x)為偶函數(shù).
則f(x)在區(qū)間(﹣∞,0)上單調遞減,
則在區(qū)間(﹣∞,0)上f'(x)<0.
由f(﹣1)=f(1)=0可得
在區(qū)間(﹣∞,﹣1)上f'(x)<0,f(x)>0.
在區(qū)間(﹣1,0)上f'(x)<0,f(x)<0.
在區(qū)間(0,1)上f'(x)>0,f(x)<0.
在區(qū)間(1,+∞)上f'(x)>0,f(x)>0.
故不等式f(x)f′(x)>0的解集為(﹣1,0)∪(1,+∞)
故選B
【考點精析】關于本題考查的函數(shù)單調性的性質和函數(shù)奇偶性的性質,需要了解函數(shù)的單調區(qū)間只能是其定義域的子區(qū)間 ,不能把單調性相同的區(qū)間和在一起寫成其并集;在公共定義域內,偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點,則在△ADE翻轉過程中,下列說法錯誤的是( )
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),離心率為 ,兩焦點分別為F1、F2 , 過F1的直線交橢圓C于M,N兩點,且△F2MN的周長為8.
(1)求橢圓C的方程;
(2)過點P(m,0)作圓x2+y2=1的切線l交橢圓C于A,B兩點,求弦長|AB|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)2009年至2015年農村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如表:
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
附:回歸直線的斜率和截距的最小二乘估計公式分別為: . .
參考數(shù)據(jù):(﹣3)×(﹣1.4)+(﹣2)×(﹣1)+(﹣1)×(﹣0.7)+1×0.5+2×0.9+3×1.6=14.
(1)求y關于t的線性回歸方程;
(2)利用(1)中的回歸方程,分析2009年至2015年該地區(qū)農村居民家庭人均純收入的變化情況,并預測該地區(qū)2017年農村居民家庭人均純收入.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年中國(云南賽區(qū))三對三籃球聯(lián)賽在昆明市體育局的大力支持下,圓滿順利結束.組織方統(tǒng)計了來自 , , , , 球隊的男子的平均身高與本次比賽的平均得分,如下表所示:
球隊 | |||||
平均身高 (單位: ) | 170 | 174 | 176 | 181 | 179 |
平均得分 (單位:分) | 62 | 64 | 66 | 70 | 68 |
(1)根據(jù)表中數(shù)據(jù),求 關于 的線性回歸方程(系數(shù)精確到 );
(2)若 隊平均身高為 ,根據(jù)(1)中所求得的回歸方程,預測 隊的平均得分.(精確到個位) 注:回歸方程 中斜率和截距最小二乘估計公式分別為
, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,an= ,n=2,3,4,….
(1)求a2 , a3 , a4 , a5的值;
(2)設bn= +1,n∈N*,求證:數(shù)列{bn}是等比數(shù)列,并求出其通項公式;
(3)對任意的m≥2,m∈N*,在數(shù)列{an}中是否存在連續(xù)的2m項構成等差數(shù)列?若存在,寫出這2m項,并證明這2m項構成等差數(shù)列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解市民在購買食物時看營養(yǎng)說明與性別的關系,現(xiàn)在社會上隨機詢問了100名市民,得到如下2×2列聯(lián)表:
(1)是否有95%的把握認為:“性別與讀營養(yǎng)說明有關系”,并說明理由;
(2)把頻率當概率,若從社會上的男性市民中隨機抽取3位,記這3位中讀營養(yǎng)說明的人數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望E(ξ).
男性 | 女性 | 總計 | |
讀營養(yǎng)說明 | 40 | 20 | 60 |
不讀營養(yǎng)說明 | 20 | 20 | 40 |
總計 | 60 | 40 | 100 |
參考公式和數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com