【題目】如圖,已知四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,且∠DAB=90°,∠ABC=45°,CB= ,AB=2,PA=1.
(1)求證:BC⊥平面PAC;
(2)若M是PC的中點,求二面角M﹣AD﹣C的大小.
【答案】
(1)證明:∵PA⊥平面ABCD,∴PA⊥BC,
在△ABC中,由余弦定理可得:AC2= ﹣2× =2,
∴AC2+BC2=AB2=4,
∴∠ACB=90°,即AC⊥BC,
又PC∩AC=A,∴BC⊥平面PAC
(2)解:由(1)可得:AD=CD=1,分別以AD,AB,AP為x,y,z軸,建立空間直角坐標系.
則A(0,0,0),D(1,0,0),P(0,0,1),C(1,1,0),M( , , ),取平面ACD的法向量 = =(0,0,1).
設平面ADM的法向量為 =(x,y,z), =( , , ), =(1,0,0).
由 ,得 ,取 =(0,1,﹣1).
cos = = ,
設二面角M﹣AD﹣C的大小為θ,易知θ為銳角.∴cosθ= ,θ=45°.
∴二面角M﹣AD﹣C的大小為45°.
【解析】(1)由PA⊥平面ABCD,可得PA⊥BC.在△ABC中,由余弦定理可得:AC2=2,因此AC2+BC2=AB2 , 可得AC⊥BC,即可證明BC⊥平面PAC.(2)由(1)可得:AD=CD=1,分別以AD,AB,AP為x,y,z軸,建立空間直角坐標系.取平面ACD的法向量 = =(0,0,1).設平面ADM的法向量為 =(x,y,z),由 ,可得 .利用cos = ,即可得出.
【考點精析】掌握直線與平面垂直的判定是解答本題的根本,需要知道一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想.
科目:高中數(shù)學 來源: 題型:
【題目】已知具有相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:
(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計當時, 的值;
(3)將表格中的數(shù)據(jù)看作五個點的坐標,則從這五個點中隨機抽取3個點,記落在直線右下方的點的個數(shù)為,求的分布列以及期望.
參考公式: , .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率為,且橢圓過點,記橢圓的左、右頂點分別為,點是橢圓上異于的點,直線與直線分別交于點.
(1)求橢圓的方程;
(2)過點作橢圓的切線,記,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點P(0,﹣4),且傾斜角為 ,圓C的極坐標方程為ρ=4cosθ.
(1)求直線l的參數(shù)方程和圓C的直角坐標方程;
(2)若直線l和圓C相交于A、B兩點,求|PA||PB|及弦長|AB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)為二次函數(shù),且f(x﹣1)+f(x)=2x2+4.
(1)求f(x)的解析式;
(2)當x∈[t,t+2],t∈R時,求函數(shù)f(x)的最小值(用t表示).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是二次函數(shù),若f(0)=0且f(x+1)﹣f(x)=x+1,求函數(shù)f(x)的解析式,并求出它在區(qū)間[﹣1,3]上的最大、最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,將繪有函數(shù)f(x)=2sin(ωx+φ)(ω>0, <φ<π)部分圖象的紙片沿x軸折成直二面角,若AB之間的空間距離為 ,則f(﹣1)=( )
A.﹣2
B.2
C.-
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com