【題目】△ABC中,A、B、C的對邊分別為a,b,c,面積為S,滿足S= (a2+b2﹣c2).
(1)求C的值;
(2)若a+b=4,求周長的范圍與面積S的最大值.

【答案】
(1)解:∵S= absinC,cosC= ,

即a2+b2﹣c2=2abcosC,

∴S= (a2+b2﹣c2)變形得: absinC= ×2abcosC,

整理得:tanC=

又0<C<π,

則C= ;


(2)解:a2+b2﹣c2=2abcosC,可得c2=(a+b)2﹣3ab=16﹣3ab,

由a+b=4≥2 (當且僅當a=b取等號),

即有0<ab≤4,

則c∈[2,4),

則周長的范圍是[6,8);

△ABC的面積為S= absinC= ab≤ ,

當且僅當a=b=2,取得最大值


【解析】(1)運用三角形的面積公式和余弦定理,結合同角的商數(shù)關系,特殊角的三角函數(shù)值,可得角C;(2)運用余弦定理和基本不等式,以及三角形的面積公式,可得最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(Ⅰ)當時,求處的切線方程;

(Ⅱ)若且函數(shù)有且僅有一個零點,求實數(shù)的值;

(Ⅲ)在(Ⅱ)的條件下,若時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】上世紀八十年代初, 鄧小平同志曾指出“在人才的問題上,要特別強調(diào)一下,必須打破常規(guī)去發(fā)現(xiàn)、選拔和培養(yǎng)杰出的人才”. 據(jù)此,經(jīng)省教育廳批準,某中學領導審時度勢,果斷作出于1985年開始施行超常實驗班教學試驗的決定.一時間,學生興奮,教師欣喜,家長歡呼,社會熱議.該中學實驗班一路走來,可謂風光無限,碩果累累,尤其值得一提的是,1990年,全國共招收150名少年大學生,該中學就有19名實驗班學生被錄取,占全國的十分之一,轟動海內(nèi)外.設該中學超常實驗班學生第x年被錄取少年大學生的人數(shù)為y.

左下表為該中學連續(xù)5年實驗班學生被錄取少年大學生人數(shù),求y關于x的線性回歸方程,并估計第6年該中學超常實驗班學生被錄取少年大學生人數(shù);

年份序號x

1

2

3

4

5

錄取人數(shù)y

10

11

14

16

19

附1:

下表是從該校已經(jīng)畢業(yè)的100名高中生錄取少年大學生人數(shù)與是否接受超常實驗班教育得到

2×2列聯(lián)表,完成上表,并回答:是否有95%以上的把握認為“錄取少年大學生人數(shù)與是否接受超常實驗班教育有關系”.

附2:

接受超常實驗班教育

未接受超常實驗班教育

合計

錄取少年大學生

60

80

未錄取少年大學生

10

合計

30

100

0.50

0.40

0.10

005

0.455

0.708

2.706

3.841

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若方程所表示的曲線為C,給出下列四個命題:

①若C為橢圓,則1t4t;

②若C為雙曲線,則t4t1;

③曲線C不可能是圓;

④若C表示橢圓,且長軸在x軸上,則1t.

其中正確的命題是________(把所有正確命題的序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是橢圓E (a>b>0)上一點,離心率為.

(1)求橢圓E的方程;

(2)設不過原點O的直線l與該橢圓E交于PQ兩點,滿足直線OP,PQOQ的斜率依次成等比數(shù)列,求△OPQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn=n2+pn+q(p,q∈R),且a2 , a3 , a5成等比數(shù)列.
(1)求p,q的值;
(2)若數(shù)列{bn}滿足an+log2n=log2bn , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù){an}滿a1=0,an+1=an+2n,那a2016的值是(
A.2014×2015
B.2015×2016
C.2014×2016
D.2015×2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個無窮數(shù)列的前項和分別為,,,對任意的,都有.

(1)求數(shù)列的通項公式;

(2)若為等差數(shù)列,對任意的,都有.證明:

(3)若為等比數(shù)列,,,求滿足值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓過圓與直線的交點,且圓上任意一點關于直線的對稱點仍在圓上

(1)求圓的標準方程;

(2)若圓軸正半軸的交點為,直線與圓交于兩點,且點的垂線(垂心是三角形三條高線的交點),求直線的方程

查看答案和解析>>

同步練習冊答案