【題目】某次測試成績滿分是為150分,設名學生的得分分別為,為名學生中得分至少為分的人數(shù).記為名學生的平均成績,則( )
A.B.
C.D.
【答案】A
【解析】
由于選項中必有一項正確,故本選擇題利用特殊法解決.設,這2名學生的得分分別為150,150.則這2名學生中得分至少為分的人數(shù)分別為:2,2,,2,2.一共有150個“2”,計算的值,再對照選項即可得到答案.
利用特殊法解決.
假設,這2名學生的得分分別為150,150.
則這2名學生中得分至少為1分的人數(shù)分別為:,
這2名學生中得分至少為2分的人數(shù)分別為:,
這2名學生中得分至少為3分的人數(shù)分別為:,
這2名學生中得分至少為150分的人數(shù)分別為:,
即這2名學生中得分至少為分的人數(shù)分別為:
2,2,,2,2.一共有150個“2”,
從而得分的同學會被記次,所有的和恰好是所有人得分的總和,
即,
從而.
.
對照選項,只有(A)正確.
故選:.
科目:高中數(shù)學 來源: 題型:
【題目】某大學生在開學季準備銷售一種文具盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出盒該產(chǎn)品獲利潤元,未售出的產(chǎn)品,每盒虧損元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示.該同學為這個開學季購進了盒該產(chǎn)品,以(單位:盒,)表示這個開學季內(nèi)的市場需求量,(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤.
(1)根據(jù)直方圖估計這個開學季內(nèi)市場需求量的眾數(shù)和平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(2)將表示為的函數(shù);
(3)根據(jù)直方圖估計利潤不少于元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小陳同學進行三次定點投籃測試,已知第一次投籃命中的概率為,第二次投籃命中的概率為,前兩次投籃是否命中相互之間沒有影響.第三次投籃受到前兩次結(jié)果的影響,如果前兩次投籃至少命中一次,則第三次投籃命中的概率為,否則為.
(1)求小陳同學三次投籃至少命中一次的概率;
(2)記小陳同學三次投籃命中的次數(shù)為隨機變量,求的概率分布及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過點的直線與橢圓:交于不同的兩點,其中,為坐標原點.
(1)若,求的面積;
(2)在軸上是否存在定點,使得直線與的斜率互為相反數(shù)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在函數(shù)()的所有切線中,有且僅有一條切線與直線垂直.
(1)求的值和切線的方程;
(2)設曲線在任一點處的切線傾斜角為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2017年冬,北京霧霾天數(shù)明顯減少,據(jù)環(huán)保局統(tǒng)計三個月的空氣質(zhì)量,達到優(yōu)良的天數(shù)超過70天.重度污染的天數(shù)僅有4天.主要原因是政府對治理霧霾采取了有效措施,如①減少機動車尾氣排放;②實施了煤改電或煤改氣工程;③關停了大量的排污企業(yè);④部分企業(yè)季節(jié)性的停產(chǎn).為了解農(nóng)村地區(qū)實施煤改氣工程后天然氣使用情況,從某鄉(xiāng)鎮(zhèn)隨機抽取100戶,進行均用氣量調(diào)查,得到的用氣量數(shù)據(jù)(單位:千立方米)均在區(qū)間圍內(nèi),將數(shù)據(jù)按區(qū)間列表如下:
分組 | 頻數(shù) | 頻率 |
14 | 0.14 | |
55 | 0.55 | |
4 | 0.04 | |
2 | 0.02 | |
合計 | 100 | 1 |
(1)求表中,的值;
(2)若同組中的每個數(shù)據(jù)用該組區(qū)間中點值代替,估計該鄉(xiāng)每戶月平均用氣量;
(3)從用量高于3千立方米的用戶中任選2戶,進行燃氣使用的滿意度調(diào)查,求這2戶用氣量處于不同區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的坐標方程為,若直線與曲線相切.
(1)求曲線的極坐標方程;
(2)在曲線上取兩點、于原點構成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 n 個四元集合 A1 , A2 ,…, An ,每兩個有且只有一個公共元 ,并且有Card(A1 ∪ A2 ∪ …∪ An)=n .試求 n 的最大值.這里 Card A 為集合A中元素的個數(shù) .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com