【題目】設(shè)集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)x+a2-1=0,a∈R},若BA,求實數(shù)a的值.
【答案】a≤-1或a=1.
【解析】
先解方程得集合A,再由 BA得B為A子集,根據(jù)子集四種情況分類討論,解出實數(shù)a的值.注意對結(jié)果要驗證
解 ∵A={0,-4},BA,于是可分為以下幾種情況.
(1)當(dāng)A=B時,B={0,-4},
∴由根與系數(shù)的關(guān)系,得解得a=1.
(2)當(dāng)B≠A時,又可分為兩種情況.
①當(dāng)B≠時,即B={0}或B={-4},
當(dāng)x=0時,有a=±1;
當(dāng)x=-4時,有a=7或a=1.
又由Δ=4(a+1)2-4(a2-1)=0,
解得a=-1,此時B={0}滿足條件;
②當(dāng)B=時,Δ=4(a+1)2-4(a2-1)<0,
解得a<-1.
綜合(1)(2)知,所求實數(shù)a的取值為a≤-1或a=1.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某旅游愛好者計劃從3個亞洲國家A1,A2,A3和3個歐洲國家B1,B2,B3中選擇2個國家去旅游.
(1)若從這6個國家中任選2個,求這2個國家都是亞洲國家的概率;
(2)若從亞洲國家和歐洲國家中各選1個,求這兩個國家包括A1,但不包括B1的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系上一動點到點的距離是點到點的距離的2倍。
(1)求點的軌跡方程;
(2)若點與點關(guān)于點對稱,求,兩點間距離的最大值。
(3)若過點的直線與點的軌跡相交于、兩點,,則是否存在直線,使 取得最大值,若存在,求出此時的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量單位:噸,將數(shù)據(jù)按照,,分成9組,制成了如圖所示的頻率分布直方圖.
(1)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù)說明理由;
(2)估計居民月均用水量的中位數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若對任意x∈(0,π),不等式ex﹣e﹣x>asinx恒成立,則實數(shù)a的取值范圍是( )
A.[﹣2,2]
B.(﹣∞,e]
C.(﹣∞,2]
D.(﹣∞,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,為等邊三角形, ,點為邊的中點.
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究型學(xué)習(xí)小組調(diào)查研究高中生使用智能手機對學(xué)習(xí)的影響,部分統(tǒng)計數(shù)據(jù)如下:
使用智能手機 | 不使用智能手機 | 合計 | |
學(xué)習(xí)成績優(yōu)秀 | |||
學(xué)習(xí)成績不優(yōu)秀 | |||
合計 |
(1)根據(jù)以上統(tǒng)計數(shù)據(jù),你是否有 的把握認(rèn)為使用智能手機對學(xué)習(xí)有影響?
(2)為了進一步了解學(xué)生對智能手機的使用習(xí)慣,現(xiàn)在對以上使用智能手機的高中時采用分層抽樣的方式,抽取一個容量為 的樣本,若抽到的學(xué)生中成績不優(yōu)秀的比成績優(yōu)秀的多 人,求 的值.
|
|
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinωxcosωx﹣ (ω>0)圖象的兩條相鄰對稱軸為 .
(1)求函數(shù)y=f(x)的對稱軸方程;
(2)若函數(shù)y=f(x)﹣ 在(0,π)上的零點為x1 , x2 , 求cos(x1﹣x2)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時,求的最小值;
(2)設(shè)函數(shù)恰有兩個零點,且,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com