【題目】已知是橢圓:()與拋物線:的一個公共點,且橢圓與拋物線具有一個相同的焦點.
(Ⅰ)求橢圓及拋物線的方程;
(Ⅱ)設(shè)過且互相垂直的兩動直線,與橢圓交于兩點,與拋物線交于兩點,求四邊形面積的最小值.
【答案】(Ⅰ)橢圓的方程為,拋物線的方程為;(Ⅱ)見解析.
【解析】
(Ⅰ)根據(jù)是橢圓:()與拋物線:的一個公共點,可求得,從而可得相同的焦點的坐標,結(jié)合,即可求得與,從而可得橢圓及拋物線的方程;(Ⅱ)由題可知直線斜率存在,設(shè)直線的方程,,當時,求出,當時,直線的方程為,結(jié)合韋達定理及弦長公式求得及,表示出,通過換元及二次函數(shù)思想即可求得四邊形面積的最小值.
(Ⅰ)拋物線:一點
,即拋物線的方程為,
又在橢圓:上
,結(jié)合知(負舍), ,
橢圓的方程為,拋物線的方程為.
(Ⅱ)由題可知直線斜率存在,設(shè)直線的方程,
①當時,,直線的方程,,故
②當時,直線的方程為,由得.
由弦長公式知 .
同理可得.
.
令,則,當時,,
綜上所述:四邊形面積的最小值為8.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查中國及美國的高中生在“家”、“朋友聚集的地方”、“個人空間”這三個場所中感到最幸福的場所是哪個,從中國某城市的高中生中隨機抽取了55人,從美國某城市高中生中隨機抽取了45人進行答題。中國高中生的答題情況:選擇“家”的高中生的人數(shù)占,選擇“朋友聚集的地方”的高中生的人數(shù)占,選擇“個人空間”的高中生的人數(shù)占,美國高中生的答題情況:選擇“家”的高中生的人數(shù)占,選擇“朋友聚集的地方”的高中生的人數(shù)占,選擇“個人空間”的高中生的人數(shù)占。
(1)請根據(jù)以上調(diào)查結(jié)果將下面的2X2列聯(lián)表補充完整,并判斷能否有95%的把握認為戀家(在家里感到最幸福)與國別有關(guān);
在家里感到最幸福 | 在其他場所感到最幸福 | 總計 | |
中國高中生 | |||
美國高中生 | |||
總計 |
(2)從被調(diào)查的不“戀家”的美國高中生中,用分層抽樣的方法隨機選出4人接受進一步調(diào)查,再從4人中隨機選出2人到中國交流學(xué)習(xí),求2人中含有在“個人空間”感到最幸福的高中生的概率。
| 0.050 | 0.025 | 0.010 | 0.001 |
3.841 | 5.024 | 6.635 | 10.8 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x-P2-x,則下列結(jié)論正確的是( 。
A. ,為奇函數(shù)且為R上的減函數(shù)
B. ,為偶函數(shù)且為R上的減函數(shù)
C. ,為奇函數(shù)且為R上的增函數(shù)
D. ,為偶函數(shù)且為R上的增函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ( x R ,且 e 為自然對數(shù)的底數(shù)).
⑴ 判斷函數(shù) f x 的單調(diào)性與奇偶性;
⑵是否存在實數(shù) t ,使不等式對一切的 x R 都成立?若存在,求出 t 的值,若 不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從甲袋內(nèi)摸出1個紅球的概率是,從乙袋內(nèi)摸出1個紅球的概率是,從兩袋內(nèi)各摸出1個球,則等于( )
A. 2個球不都是紅球的概率B. 2個球都是紅球的概率
C. 至少有1個紅球的概率D. 2個球中恰好有1個紅球的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大豆是我國主要的農(nóng)作物之一,因此,大豆在農(nóng)業(yè)發(fā)展中占有重要的地位,隨著農(nóng)業(yè)技術(shù)的不斷發(fā)展,為了使大豆得到更好的種植,就要進行超級種培育研究.某種植基地培育的“超級豆”種子進行種植測試:選擇一塊營養(yǎng)均衡的可種植株的實驗田地,每株放入三!俺壎”種子,且至少要有一粒種子發(fā)芽這株豆苗就能有效成活,每株豆成活苗可以收成大豆.已知每粒豆苗種子成活的概率為(假設(shè)種子之間及外部條件一致,發(fā)芽相互沒有影響).
(Ⅰ)求恰好有3株成活的概率;
(Ⅱ)記成活的豆苗株數(shù)為,收成為,求隨機變量分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為回饋顧客,某商場擬通過摸球兌獎的方式對位顧客進行獎勵,規(guī)定:每位顧客從一個裝有個標有面值的球的袋中一次性隨機摸出個球,球上所標的面值之和為該顧客所獲的獎勵額.
(1)若袋中所裝的個球中有個所標的面值為元,其余個均為元,求顧客所獲的獎勵額的分布列及數(shù)學(xué)期望;
(2)商場對獎勵總額的預(yù)算是元,并規(guī)定袋中的個球只能由標有面值為元和元的兩種球組成,或標有面值元和元的兩種球組成.為了使顧客得到的獎勵總額盡可能符合商場的預(yù)算且每位顧客所獲的獎勵額相對均衡.請對袋中的個球的面值給出一個合適的設(shè)計,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線具有性質(zhì):若、是雙曲線左、右頂點,為雙曲線上一點,且在第一象限.記直線,的斜率分別為,,那么與之積是與點位置無關(guān)的定值.
(1)試對橢圓,類比寫出類似的性質(zhì)(不改變原有命題的字母次序),并加以證明.
(2)若橢圓的左焦點,右準線為,在(1)的條件下,當取得最小值時,求的垂心到軸的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com