【題目】已知點(diǎn)P(1,1),過(guò)點(diǎn)P動(dòng)直線l與圓C:x2+y2﹣2y﹣4=0交與點(diǎn)A,B兩點(diǎn).
(1)若|AB|= ,求直線l的傾斜角;
(2)求線段AB中點(diǎn)M的軌跡方程.

【答案】
(1)解:由題意:圓C:x2+y2﹣2y﹣4=0,

化為圓的標(biāo)準(zhǔn)方程x2+(y﹣1)2=5,圓心C(0,1),r=

∵又|AB|=

當(dāng)動(dòng)直線l的斜率不存在時(shí),直線l的方程為x=1時(shí),顯然不滿足題意;

當(dāng)動(dòng)直線l的斜率存在時(shí),設(shè)動(dòng)直線l的方程為:y﹣1=k(x﹣1)即kx﹣y+1﹣k=0

故弦心距d= =

再由點(diǎn)到直線的距離公式可得d= = ,

解得:k=±

即直線l的斜率等于± ,

根據(jù)tanθ=k,

故得直線l的傾斜角等于


(2)解:由題意:線段AB中點(diǎn)為M,設(shè)M的坐標(biāo)(x,y),

由垂徑定理可知∠PMC=90°,故點(diǎn)M的軌跡是以CP為直徑的圓,

又∵點(diǎn)C(0,1),P(1,1)

故M的軌跡方程為


【解析】(1)利用點(diǎn)斜式,設(shè)出過(guò)P點(diǎn)的直線l,利用與圓的弦長(zhǎng)為 ,求出k的值,可得直線l的傾斜角;(2)設(shè)M的坐標(biāo)(x,y),由垂徑定理可知∠PMC=90°,故點(diǎn)M的軌跡是以CP為直徑的圓.可得方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某特色餐館開(kāi)通了美團(tuán)外賣(mài)服務(wù),在一周內(nèi)的某特色菜外賣(mài)份數(shù)(份)與收入(元)之間有如下的對(duì)應(yīng)數(shù)據(jù):

外賣(mài)份數(shù)(份)

2

4

5

6

8

收入(元)

30

40

60

50

70

(1)畫(huà)出散點(diǎn)圖;

(2)求回歸直線方程;

(3)據(jù)此估計(jì)外賣(mài)份數(shù)為12份時(shí),收入為多少元.

注:①參考公式:線性回歸方程系數(shù)公式 ;

②參考數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】阿海準(zhǔn)備購(gòu)買(mǎi)“海馬”牌一輛小汽車(chē),其中購(gòu)車(chē)費(fèi)用12.8萬(wàn)元,每年的保險(xiǎn)費(fèi)、汽油費(fèi)約為0.95萬(wàn)元,年維修、保養(yǎng)費(fèi)第一年是0.1萬(wàn)元,以后逐年遞增0.1萬(wàn)元.請(qǐng)你幫阿海計(jì)算一下這種汽車(chē)使用多少年,它的年平均費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了了解高二年級(jí)學(xué)生對(duì)教師教學(xué)的意見(jiàn),打算從高二年級(jí)883名學(xué)生中抽取80名進(jìn)行座談,若采用下面的方法選。合扔煤(jiǎn)單隨機(jī)抽樣從883人中剔除3人,剩下880人再按系統(tǒng)抽樣的方法進(jìn)行,則每人入選的概率是(
A.
B.
C.
D.無(wú)法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:

(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(1)當(dāng)時(shí),求不等式的解集;

(2)若不等式的解集為空集,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(k)是滿足不等式log2x+log2(52k1﹣x)≥2k(k∈N*)的自然數(shù)x的個(gè)數(shù).
(1)求f(k)的函數(shù)解析式;
(2)Sn=f(1)+2f(2)+…+nf(n),求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù),關(guān)于實(shí)數(shù)的不等式的解集為

1)當(dāng)時(shí),解關(guān)于的不等式: ;

2)是否存在實(shí)數(shù),使得關(guān)于的函數(shù))的最小值為?若存在,求實(shí)數(shù)的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】鈍角三角形ABC的面積是 ,AB=1,BC= ,則AC=(
A.5
B.
C.2
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案