精英家教網 > 高中數學 > 題目詳情
已知△ABC的頂點A(2,8),B(-4,0),C(6,0),
(1)求直線AB的斜率; 
(2)求BC邊上的中線所在直線的方程.
分析:(1)根據A、B兩點的坐標,利用斜率公式求得直線AB的斜率.
(2)利用中點公式求得BC邊上的中點M的坐標,再利用兩點式求得BC邊上的中線AM的方程.
解答:解:(1)∵A(2,8),B(-4,0),
由斜率公式求得直線AB的斜率k=
8-0
2+4
=
4
3

(2)設BC邊上的中點為M,則由B(-4,0),C(6,0),可得M(1,0),
∴BC邊上的中線AM的方程為
y-0
8-0
=
x-1
2-1
,
即 8x-y-8=0.
點評:本題主要考查直線的斜率公式的應用,用兩點式求直線的方程,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在直角坐標系xoy中,已知△ABC的頂點A(-1,0)和C(1,0),頂點B在橢圓
x2
4
+
y2
3
=1
上,則
sinA+sinC
sinB
的值是(  )
A、
3
2
B、
3
C、4
D、2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的頂點A,B的坐標分別為(-4,0),(4,0),C 為動點,且滿足|AC|+|BC|=
54
|AB|
,求點C的軌跡方程,并說明它是什么曲線.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的頂點A(1,3),AB邊上的中線CM所在直線方程為2x-3y+2=0,AC邊上的高BH所在直線方程為2x+3y-9=0.求:
(1)頂點C的坐標;
(2)直線BC的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC的頂點A(0,-4),B(0,4),且4(sinB-sinA)=3sinC,則頂點C的軌跡方程是
y2
9
-
x2
7
=1
(y>3)
y2
9
-
x2
7
=1
(y>3)

查看答案和解析>>

同步練習冊答案