【題目】(本小題滿分10分)選修4—4:坐標系與參數(shù)方程
在直角坐標系xOy中,圓C的參數(shù)方程為參數(shù)).以O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求圓C的極坐標方程;
(2)直線的極坐標方程是,射線與圓C的交點為O、P,與直線的交點為Q,求線段PQ的長.
科目:高中數(shù)學 來源: 題型:
【題目】已知圓的圓心在直線: 上,與直線: 相切,且截直線: 所得弦長為6
(Ⅰ)求圓的方程
(Ⅱ)過點是否存在直線,使以被圓截得弦為直徑的圓經過原點?若存在,寫出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】分層抽樣是將總體分成互不交叉的層,然后按照一定的比例,從各層獨立地抽取一定數(shù)量的個體,組成一個樣本的抽樣方法;在《九章算術》第三章“衰分”中有如下問題:“今有甲持錢五百六十,乙持錢三百五十,丙持錢一百八十,凡三人俱出關,關稅百錢.欲以錢多少衰出之,問各幾何?”其譯文為:今有甲持560錢,乙持350錢,丙持180錢,甲、乙、丙三人一起出關,關稅共100錢,要按照各人帶錢多少的比例進行交稅,問三人各應付多少稅?則下列說法錯誤的是( )
A. 甲應付錢 B. 乙應付錢
C. 丙應付錢 D. 三者中甲付的錢最多,丙付的錢最少
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過原點的動直線與圓相交于不同的兩點.
(1)求線段的中點的軌跡的方程;
(2)是否存在實數(shù),使得直線與曲線只有一個交點?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 上的任一點到焦點的距離最大值為3,離心率為 ,
(1)求橢圓的標準方程;
(2)若為曲線上兩點, 為坐標原點,直線 的斜率分別為,且,求直線被圓截得弦長的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓錐曲線: (為參數(shù))和定點, , 是此圓錐曲線的左、右焦點.
(1)以原點為極點,以軸的正半軸為極軸建立極坐標系,求直線的極坐標方程;
(2)經過且與直線垂直的直線交此圓錐曲線于, 兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某農科所發(fā)現(xiàn),一種作物的年收獲量 (單位: )與它“相近”作物的株數(shù) 具有線性相關關系(所謂兩株作物“相近”是指它們的直線距離不超過 ),并分別記錄了相近作物的株數(shù)為 時,該作物的年收獲量的相關數(shù)據如下:
(1)求該作物的年收獲量 關于它“相近”作物的株數(shù)的線性回歸方程;
(2)農科所在如圖所示的正方形地塊的每個格點(指縱、橫直線的交叉點)處都種了一株該作物,其中每
個小正方形的面積為 ,若在所種作物中隨機選取一株,求它的年收獲量的分布列與數(shù)學期望.(注:年收
獲量以線性回歸方程計算所得數(shù)據為依據)
附:對于一組數(shù)據,其回歸直線的斜率和截距的最小二乘估
計分別為, ,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學為調研學生在, 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.
整理評分數(shù)據,將分數(shù)以10為組距分成6組: , , , , , ,得到餐廳分數(shù)的頻率分布直方圖,和餐廳分數(shù)的頻數(shù)分布表:
(Ⅰ)在抽樣的100人中,求對餐廳評分低于30的人數(shù);
(Ⅱ)從對餐廳評分在范圍內的人中隨機選出2人,求2人中恰有1人評分在范圍內的概率;
(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且x≤0時,f(x)= (1﹣x).
(1)求f(0),f(1);
(2)求函數(shù)f(x)的解析式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com