【題目】設△ABC的內角A,B,C的內角對邊分別為a,b,c,滿足(a+b+c)(a﹣b+c)=ac. (Ⅰ)求B.
(Ⅱ)若sinAsinC= ,求C.

【答案】解:(I)∵(a+b+c)(a﹣b+c)=(a+c)2﹣b2=ac, ∴a2+c2﹣b2=﹣ac,
∴cosB= =﹣
又B為三角形的內角,
則B=120°;
(II)由(I)得:A+C=60°,∵sinAsinC= ,cos(A+C)= ,
∴cos(A﹣C)=cosAcosC+sinAsinC=cosAcosC﹣sinAsinC+2sinAsinC=cos(A+C)+2sinAsinC= +2× =
∴A﹣C=30°或A﹣C=﹣30°,
則C=15°或C=45°
【解析】(I)已知等式左邊利用多項式乘多項式法則計算,整理后得到關系式,利用余弦定理表示出cosB,將關系式代入求出cosB的值,由B為三角形的內角,利用特殊角的三角函數(shù)值即可求出B的度數(shù);(II)由(I)得到A+C的度數(shù),利用兩角和與差的余弦函數(shù)公式化簡cos(A﹣C),變形后將cos(A+C)及2sinAsinC的值代入求出cos(A﹣C)的值,利用特殊角的三角函數(shù)值求出A﹣C的值,與A+C的值聯(lián)立即可求出C的度數(shù).
【考點精析】本題主要考查了兩角和與差的正弦公式和余弦定理的定義的相關知識點,需要掌握兩角和與差的正弦公式:;余弦定理:;;才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}滿足a1=1,a2=2,an+2=2an+1﹣an+2. (Ⅰ)設bn=an+1﹣an , 證明{bn}是等差數(shù)列;
(Ⅱ)求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中值域為(0,+∞)的是( )
A.
B.y=x+ ({x>0})
C.y=
D.y=x﹣ (x≥1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy內,動點P到定點F(﹣1,0)的距離與P到定直線x=﹣4的距離之比為
(1)求動點P的軌跡C的方程;
(2)設點A、B是軌跡C上兩個動點,直線OA、OB與軌跡C的另一交點分別為A1、B1 , 且直線OA、OB的斜率之積等于- ,問四邊形ABA1B1的面積S是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠修建一個長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價為120元,池壁每平方米的造價為100元.設池底長方形的長為x米. (Ⅰ)求底面積,并用含x的表達式表示池壁面積;
(Ⅱ)怎樣設計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設D是圖中邊長分別為1和2的矩形區(qū)域,E是D內位于函數(shù)y= (x>0)圖象下方的區(qū)域(陰影部分),從D內隨機取一個點M,則點M取自E內的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在 中, 分別是角 的對邊,且 .
(Ⅰ)求 的大。
(Ⅱ)若 ,求 的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】)已知命題p:“x∈[1,2],x2﹣a≥0”,命題q:“x∈R,x2+2ax+2﹣a=0”.若命題“p且q”是真命題,則實數(shù)a的取值范圍為(
A.﹣2≤a≤1
B.a≤﹣2或1≤a≤2
C.a≥1
D.a≤﹣2或 a=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,橢圓 的左焦點為F1 , 右焦點為F2 , 過F1的直線交橢圓于A,B兩點,△ABF2的周長為8,且△AF1F2面積最大時,△AF1F2為正三角形.
(1)求橢圓E的方程;
(2)設動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相交于點Q.試探究:①以PQ為直徑的圓與x軸的位置關系? ②在坐標平面內是否存在定點M,使得以PQ為直徑的圓恒過點M?若存在,求出M的坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案