【題目】在平面直角坐標系中有如下正確結(jié)論:為曲線、為非零實數(shù),且不同時為負)上一點,則過點的切線方程為

(1)已知為橢圓上一點,為過點的橢圓的切線,若直線與直線的斜率分別為,求證:為定值;

(2)過橢圓上一點引橢圓的切線,與軸交于點.若為正三角形,求橢圓的方程;

(3)求與圓及(2)中的橢圓均相切的直線與坐標軸圍成的三角形的面積的取值范圍.

【答案】(1)證明見解析;(2);(3)

【解析】

(1)根據(jù)已知題目中所給的結(jié)論結(jié)合斜率公式可以證明出為定值;

(2) 由題目中的結(jié)論求出橢圓切線方程,求出點的坐標,根據(jù)等邊三角形三邊相等列出方程組,即可求出的值;

(3)設(shè)出直線的方程,根據(jù)與圓相切和(2)中橢圓相切,得到兩個等式,求出三角形的面積表達式,最后利用基本不等式可以求出三角形的面積的取值范圍.

(1) 為橢圓上一點,為過點的橢圓的切線,所以的方程為:,由題意可知:,所以

為定值;

(2)設(shè)點的坐標為:,由已知所給的結(jié)論可知:過橢圓上一點引橢圓的切線的方程為:,與題意可知:點的坐標為:.

.

因為為正三角形,所以三邊相等,因此有方程組:

,因為點在橢圓上,所以

橢圓的方程為;

(3)設(shè)直線的方程為:,由題意可知:.與兩個坐標軸的交點坐標分別為:,所以直線與坐標軸圍成的三角形的面積為:.

因為直線相切,所以方程組:有唯一解,

即方程有唯一實根,,

.

因為直線相切,所以方程組:有唯一解,

即方程有唯一實根,,

,,所以

因為,所以,因為,所以這個不等式恒成立.

(當且僅當時取等號,

取等號),所以直線與坐標軸圍成的三角形的面積的取值范圍為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】動點與點的距離和它到直線的距離相等,記點的軌跡為曲線

1)求曲線的方程

2)設(shè)點,動點在曲線上運動時,的最短距離為,求的值以及取到最小值時點的坐標

3)設(shè)為曲線的任意兩點,滿足為原點),試問直線是否恒過一個定點?如果是,求出定點坐標;如果不是,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足: ,

(1)求數(shù)列的通項公式;

(2)設(shè)數(shù)列的前項和為,且滿足,試確定的值,使得數(shù)列為等差數(shù)列;

(3)將數(shù)列中的部分項按原來順序構(gòu)成新數(shù)列,且,求證:存在無數(shù)個滿足條件的無窮等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為保護農(nóng)民種糧收益,促進糧食生產(chǎn),確保國家糧食安全,調(diào)動廣大農(nóng)民糧食生產(chǎn)的積極性,從2004年開始,國家實施了對種糧農(nóng)民直接補貼.通過對2014~2018年的數(shù)據(jù)進行調(diào)查,發(fā)現(xiàn)某地區(qū)發(fā)放糧食補貼額(億元)與該地區(qū)糧食產(chǎn)量(萬億噸)之間存在著線性相關(guān)關(guān)系.統(tǒng)計數(shù)據(jù)如下表:

年份

2014年

2015年

2016年

2017年

2018年

補貼額億元

9

10

12

11

8

糧食產(chǎn)量萬億噸

23

25

30

26

21

(1)請根據(jù)如表所給的數(shù)據(jù),求出關(guān)于的線性回歸直線方程;

(2)通過對該地區(qū)糧食產(chǎn)量的分析研究,計劃2019年在該地區(qū)發(fā)放糧食補貼額7億元,請根據(jù)(1)中所得的線性回歸直線方程,預(yù)測2019年該地區(qū)的糧食產(chǎn)量.

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于曲線C所在平面上的定點,若存在以點為頂點的角,使得對于曲線C上的任意兩個不同的點A,B恒成立,則稱角為曲線C相對于點界角,并稱其中最小的界角為曲線C相對于點確界角.曲線相對于坐標原點確界角的大小是 _________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高科技企業(yè)研制出一種型號為A的精密數(shù)控車床,A型車床為企業(yè)創(chuàng)造的價值逐年減少(以投產(chǎn)一年的年初到下一年的年初為A型車床所創(chuàng)造價值的第一年).若第 1 A型車床創(chuàng)造的價值是250萬元,且第1年至第6年,每年A型車床創(chuàng)造的價值減少30萬元;從第7年開始,每年A型車床創(chuàng)造的價值是上一年價值的 50.現(xiàn)用()表示A型車床在第n年創(chuàng)造的價值.

1)求數(shù)列的通項公式;

2)記為數(shù)列的前n項的和,企業(yè)經(jīng)過成本核算,若 萬元,則繼續(xù)使用A型車床,否則更換A型車床,試問該企業(yè)須在第幾年年初更換A型車床?(已知:若正數(shù)數(shù)列是單調(diào)遞減數(shù)列,則數(shù)列也是單調(diào)遞減數(shù)列).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線相切.

)求橢圓的方程;

)設(shè),,是橢圓上關(guān)于軸對稱的任意兩個不同的點,連結(jié)交橢圓于另一點,證明直線軸相交于定點;

)在()的條件下,過點的直線與橢圓交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質(zhì)量分別在,,,(單位:克)中,經(jīng)統(tǒng)計得頻率分布直方圖如圖所示.

(1) 經(jīng)計算估計這組數(shù)據(jù)的中位數(shù);

(2)現(xiàn)按分層抽樣從質(zhì)量為,的芒果中隨機抽取個,再從這個中隨機抽取個,求這個芒果中恰有個在內(nèi)的概率.

(3)某經(jīng)銷商來收購芒果,以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有個,經(jīng)銷商提出如下兩種收購方案:

A:所以芒果以/千克收購;

B:對質(zhì)量低于克的芒果以/個收購,高于或等于克的以/個收購.

通過計算確定種植園選擇哪種方案獲利更多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上海市普通高中學(xué)業(yè)水平等級考成績共分為五等十一級,各等級換算成分數(shù)如表所示:

等級

A

B

C

D

E

分數(shù)

70

67

64

61

58

55

52

49

46

43

40

上海某高中2018屆高三班選考物理學(xué)業(yè)水平等級考的學(xué)生中,有5人取得成績,其他人的成績至少是B級及以上,平均分是64分,這個班級選考物理學(xué)業(yè)水平等級考的人數(shù)至少為______

查看答案和解析>>

同步練習冊答案